004 TI025 Andre Sugijoko Trifenaus Prabu Hidayat Unika Atma Jaya OK R1

Gratis

0
0
6
1 year ago
Preview
Full text

PENJADWALAN FLOW SHOP MENGGUNAKAN ALGORITMA BEE COLONY

  

Andre Sugijoko, Trifenaus Prabu Hidayat

Jurusan Teknik Industri

  • – Fakultas Teknik Universitas Katolik Atma Jaya – Jakarta

    e-mail hidayat_tp@yahoo.com

  

Abstrak

Persaingan dunia industri saat ini terjadi perlombaan untuk meningkatkan produktivitas. Salah satu

usaha untuk meningkatkan produkstivitas adalah dengan melakukan penjadwalan produksi.

  

Penjadwalan merupakan bagian yang penting dari suatu sistem produksi suatu perusahaan seperti

meningkatkan utilitas mesin, dan mempersingkat waktu silkus tiap produk. Penjadwalan produksi

dapat diselesaikan dengan menggunakan pendekatan heuristik, dimana salah satunya adalah

Algoritma Bee Colony. Algoritma Bee Colony merupakan aplikasi dari kebiasaan lebah dalam

mencari madu. Keunggulan Algoritma Bee Colony Algorithm terdapat pada kehandalannya dalam

mencari solusi kompleks terutama seperti penjadwalan. Dalam studi ini Algoritma Bee Colony

dilakukan modifikasi pada tahap Forgaging dengan metode penjadwalan sederhana yang sering

digunakan. Fungsi tujuan dalam penelitian ini adalah minimasi makespan. Aplikasi modifikasi

Algoritma Bee Colony menggunakan sutdi kasus pada PT. XYZ. Berdasarkan aplikasi modifikasi

Algoritma Bee Colony, Modifikasi pada tingkat Forgaging akan membuat proses pada tingkat waggle

dance level tidak efektif, karena solusi pada tingkat Forgaging telah optimum.

  Keyword: Penjadwalan Produksi, Bee Colony, Makespan, Forgaging, Heuristik PENDAHULUAN

  Persaingan di dunia industri yang ketat mejadi tantangan dalam lingkungan manufaktur untuk meningkatkan poduktivitas. Salah satu usaha untuk meningkatkan produkstivitas adalah dengan melakukan penjadwalan produksi. Penjadwalan merupakan bagian yang penting dari suatu sistem produksi suatu perusahaan seperti meningkatkan utilitas mesin, dan mempersingkat waktu silkus tiap produk. Penjadwalan produksi dapat diselesaikan dengan menggunakan suatu pendekatan heuristik. Salah satu pendekatan heuristik adalah Algoritma Bee Colony. Bee Colony

  

Algorithm merupakan salah satu algoritma yang mengadaptasi kebiasaan lebah dalam mencari

  makanan yaitu forgaging. Forgaging merupakan aktivitas untuk mencari sumber makanan oleh lebah pengintai. Yang dimana setelah ditemukannya sumber yang baik, maka lebah pengintai akan kembali ke sarang untuk melakukan waggle dance [Frisch, 1974]. Melalui tarian ini lebah yang lainnya akan diberi informasi mengenai posisi sumber dan jarak sumber dari sarang, hal ini yang akan mengakibatkan banyak lebah yang akan mencari sumber tersebut dan juga membuka kemungkinan lebah untuk mencari sumber yang lebih baik atau sumber baru. Bee Colony

  

Algorithm merupakan salah satu algoritma dari algoritma metode heuristik yang lebih tepatnya

berada pada metode metaheuristik.

  Metode metaheuristik merupakan metode heuristik yang lebih banyak menggunakan pencarian secara acak, dan dapat digunakan untuk rentang permasalahan yang lebih luas, namun dalam performansi tidak bisa dijamin keberhasilannya. Metode metaheuristik bergantung akan prosedur pembantu seperti mutasi, dan batasan-batasan, sehingga prosedur pembantu inilah yang menentukan baik-buruknya performa dan lama penyelesaian dari suatu algoritma metode metaheuristik .

  Dalam penelitian ini, ingin memperbaiki akan performa dari algoritma Bee Colony untuk masalah penjadwalan yaitu minimasi total waktu produksi, dengan melakukan modifikasi pada prosedur pembantu yaitu pada langkah forgaging, dimana pencarian solusi menggunakan pencarian acak diperbaiki dengan menggunakan metode –metode penjadwalan sederhana yang sering digunakan untuk mencari total waktu produksi terkecil serta mengaplikasikannya. Perbaikan yang dilakukan terketak pada tahap pembangkitan atau pembuatan solusi awal. Dimana dalam algoritma

  

Bee Colony pembangkitan solusi awal untuk penjadwalan dilakukan dengan menggunakan

  pencarian acak, kemudian dilanjutkan dengan metode pembangkitan solusi (contoh: neighbourhood

  

search ) untuk membangkitkan solusi dari solusi awal, selanjutnya dari sekian solusi yang didapat

  akan dipilih lagi satu solusi untuk dijadikan solusi awal lagi. Dalam algoritma Bee Colony akan mengulangi proses tersebut hingga mencapai kriteria berhenti, dan apabila solusi yang terpilih selalu sama maka pembangkitan solusi yang dihasilkan akan selalu sama pula. Sehingga dari permasalahan ini dilakukan modifikasi pada algoritma Bee Colony untuk mengurangi waktu yang terbuang karena kondisi tersebut, yaitu pembangkitan solusi dilaksanakan secara serempak dengan menggunakan metode atau algoritma penjadwalan yang sederhana, kemudian dipilih dengan menggunakan kriteria pemilihan dari algoritma Bee Colony.

  METODOLOGI PENELITIAN Secara lengkap metodologi penelitian ini dapat dilihat pada Gambar 1. Start Forgaging

  Membangkitkan Solusi-solusi

  1 Alternatif dari permasalahan Seleksi

  Memilih beberapa Solusi dari solusi- solusi yang telah terbentuk Waggle Dance

  Melakukan perbandingan Fitness Value antara satu solusi dengan solusi- solusi yang telah terbentuk Menentukan Probabilitas (ri) suatu solusi Seleksi Akhir

  Memilih Solusi yang memiliki Fitness terbaik dan ri tertinggi Value

  Stop

  Gambar 1. Flowchart Penjadwalan Produksi dengan Modifikasi Algoritma Bee Colony

  1 Jumlah Stage untuk Single Multiple Membuat

  Satu Produk? Yes Mesin yang Alur Produk

  Yes dipakai Flowshop ? No

  Pararel ? No Penjadwalan untuk

  Penjadwalan untuk

1 Pekerjaan dengan

  1 Pekerjaan dengan Penjadwalan FlowShop mesin tunggal mesin tunggal Metode Penjadwalan : Metode : SPT,

  Metode : SPT, EDD, Metode : SPT, Aturan Johnson , EDD, LPT LPT

  EDD, LPT Algoritma CDS, FCFS, WSPT, Slack FCFS, WSPT, Slack FCFS, WSPT, Slack Algoritma Pour,

  Algoritma Hodgson, Algoritma Hodgson, Algoritma Hodgson, Algorima NEH, Algoritma

  Algoritma Wilkerson Algoritma Algoritma Heuristik Wilkerson Irwin Irwin

  Wilkerson Irwin Palmer

Lakukan Pembagian Lakukan Penyesuaian

Penjadwalan untuk Penjadwalan dengan

Mesin Pararel Persyaratan Precendence

  Lakukan Pembagian Stop

  Penjadwalan untuk Mesin Pararel

  Gambar 1. Flowchart Penjadwalan Produksi dengan Modifikasi Algoritma Bee Colony Modifikasi algoritma Bee Colony pada penelitian ini terletak pada tahap forgaging, dimana langkah-langkah untuk keseluruhan modifikasi adalah sebagai berikut :

  Tahap Forgaging

  Mengacu pada Gambar 1, pada bagian Forgaging Waktu baku yang telah didapatkan melalui pengujian dan penyesuaian dari waktu pekerja. Kemudian dibangkitkan solusi awal untuk algoritma Bee Colony dengan menggunakan metode penjadwalan yang telah ditetapkan. Prosedur pemilihan metode penjadwalan tersebut memiliki aturan dimana dapat dilihat pada Gambar 1. Setelah membangkitkan solusi-solusi alternatif, maka solusi-solusi tersebut akan diseleksi.

  Penjelasan untuk pemilihan metode penjadwalan yang digunakan adalah sebagai berikut:

  1. Apabila proses produksinya hanya berjumlah satu operasi , menggunakan satu mesin dan pekerjaan atau produknya hanya satu, maka metode penjadwalan yang digunakan adalah metode penjadwalan SPT, EDD, LPT, FCFS, WSPT, Slack, Algoritma Hodgson, dan Algoritma Wilkerson Irwin.

  2. Apabila proses produksi berjumlah satu operasi , menggunakan banyak mesin dan memiliki banyak produk atau pekerjaan , maka metode penjadwalan yang digunakan adalah metode penjadwalan SPT, EDD, LPT, FCFS, WSPT, Slack, Algoritma Hodgson, dan Algoritma Wilkerson Irwin. Setelah didapatkan solusinya, diperlukan pembagian pekerjaan atau produk sesuai dengan jumlah mesin yang digunakan.

  3. Apabila proses produksi berjumlah lebih dari satu operasi, dan memiliki aliran proses flow

  shop , maka metode penjadwalan yang digunakan adalah metode penjadwalan Aturan Jhonson, Algoritma CDS, Algoritma NEH, Algoritma Pour, dan Algoritma Palmer.

  4. Apabila proses produksi berjumlah lebih dari satu operasi, dan memiliki aliran proses job

  shop , maka metode penjadwalan yang digunakan adalah metode penjadwalan SPT, EDD, LPT, FCFS, WSPT, Slack, Algoritma Hodgson, dan Algoritma Wilkerson Irwin.

  Apabila tiap produk atau pekerjaan memiliki urutan operasi yang telah ditetapkan, maka tiap metode penjadwalan harus mempertimbangkan urutan operasi tiap produk. Apabila ditemukan menggunakan mesin atau lini pararel, maka setelah didapat solusinya harus dilakukan pembagian pekerjaan sesuai dengan jumlah mesin atau lini yang dipakai.

  Metode-metode penjadwalan tersebut dipilih karena, metode-metode tersebut merupakan metode yang memiliki prosedur yang sederhana untuk menghasilkan solusi, sehingga diharapkan didapat solusi yang mendekati optimal. Pembagian untuk mesin yang pararel ditujukan untuk membagi beban pekerjaan tiap mesin secara seimbang.

  Tahap Seleksi

  Pada tahap seleksi, solusi dipilih dengan cara mengambil satu dari tiap metode penjadwalan yang dipakai pada tahap forgaging dan memiliki nilai makespan yang terkecil Tujuan pemilihan satu solusi tiap metode adalah untuk mengurangi ketidakakuratan dalam penentuan nilai

  (ri) pada waggle dance dan setiap solusi mewakili setiap metode

  probabilitas rangking penjadwalan yang digunakan pada tahap forgaging.

  Tahap Waggle Dance

  Solusi yang terpilih selanjutnya akan dicari nilai profitability ratingnya dengan menggunakan rumus: (1)

  Dimana Pfi = fungsi tujuan i C max = makespan dari solusi ke-i Kemudian dihitung nilai Pi-nya, yang bertujuan untuk mencari nilai probabilitas rangking (ri) dengan rumus:

  (2) Dimana Pfcolony = nilai rating keuntungan n = jumlah solusi sisa j

  C max = makespan dari solusi ke-j Nilai profitability rating tiap solusi (rumus ke-1) akan dibandingkan dengan nilai

  

profitability rating rata-rata, dengan menggunakan rumus ke-2 yang bertujuan untuk mencari nilai

probabilitas rangking (ri), Gambar 1 menunjukan prosedur pemberian nilai profitability rating

  untuk tiap solusi yang terpilih pada tahap seleksi.

  Nilai probabilitas rangking (ri) dipilih dengan menggunakan Tabel 1, sehingga untuk pemilihan solusi akhir dipakai kriteria nilai fitness terbesar dan nilai Probabilty ri yang terbesar.

  

Tabel 1. Batas Range untuk Menentukan Nilai Probabilty ri

  Nilai Range

  Probabilty ri

  Pf < 0.9 Pf colony

  0.00

  0.9 Pf colony

  0.02 ≤ Pf <0.9 Pf colony

  0.95 Pf colony ≤ Pf < 1.15 Pf colony

  0.20

  1.15 Pf colony ≤ Pf

  0.60 Tabel 1 diatas merupakan modifikasi dari tabel yang bersumber dari jurnal Chong, Low, Sivakumar, and Gay. 2006 (Tabel 2).

  

Tabel 2. Batas Range untuk Menentukan Nilai Probabilty ri

  Tujuan dilakukan perbandingan antara nilai profitability rating tiap solusi dengan nilai

  

profitability rating rata-rata dan modifikasi pada batas range untuk menentukan nilai probabilty ri, adalah untuk memastikan bahwa solusi akhir yang akan terpilih merupakan solusi yang lebih unggul baik dari segi makespan terhadap makespan tiap solusi dan dari segi makespan terhadap

  makespan keseluruhan solusi.

  HASIL DAN PEMBAHASAN Pada bagian ini akan disajikan hasil dari penggunaan modifikasi algoritma Bee Colony.

  Dimana hasil pengolahan ini menggunakan data target produksi untuk minggu pertama bulan November, dan data waktu proses produk yang telah diolah sebelumnya. Pengaplikasian modifikasi algoritma Bee Colony ini dilakukan pada suatu perusahaan manufaktur PT. XYZ, dimana perusahaan ini memiliki proses produksi yang bersifat flow shop.

  Hasil yang diperoleh pada tahap forgaging dapat dilihat pada Tabel 3. Tabel 3 menunjukan bahwa untuk menyelesaikan permasalahan penjadwalan flow shop digunakan metode penjadwalan antara lain; Metode Jhonson, Metode CDS, Metode Pour, Metode NEH, dan Metode Palmer dalam tahap forgaging.

  

Tabel 3 Hasil Inisialisasi Awal pada Tahap Forgaging

  Solusi Makespan (Menit) Jhonson dan CDS 6418,875

  Pour 6368,275 NEH 6270,575

  Palmer 7228,075 Sekilas terlihat bahwa solusi yang terpilih sebagai solusi akhir adalah solusi yang memiliki nilai makespan sebesar 6270.575 menit. Tahap yang berikutmya adalah tahap waggle dance untuk memberikan nilai fitness dan probability ri, dimana solusi yang terbaik adalah solusi dengan nilai fitness dan probability ri yang tertinggi. Hasil perhitungannya dapat dilihat pada Tabel 4.

  

Tabel 4. Ringkasan Hasil Nilai Fitness Value dan Probabilty ri Tiap Solusi

Makespan

  Solusi (Menit) Pf ri Jhonson dan CDS 6418,875 1,56E-04 0,2

  Pour 6368,275 1,57E-04 0,2

NEH 6270,575 1,59E-04 0,2

  Palmer 7228,075 1,38E-04 0,02 Hasil akhir yang didapat ternyata solusi yang menghasilkan makespan sebesar 6270.575 menit. Hal ini menunjukan bahwa tahap waggle dance dipakai sebagai tahap memverifikasi solusi dari fungsi awalnya yang sebagai penilaian dan pemilihan solusi.

  Aplikasi modifikasi algoritma Bee Colony menghasilkan nilai makespan yang lebih kecil daripada penjadwalan yang digunakan perusahaan saat ini (Tabel 5). Hal ini menujukan bahwa modifikasi yang dilakukan terhadap algoritma Bee Colony dapat dipakai untuk menyelesaikan permasalahan penjadwalan, sebab dengan nilai makespan yang kecil akan mengakibatkan efisiensi yang lebih optimal sehingga perusahaan dapat mencapai keuntungan yang optimal pula.

  

Tabel 5. Perbandingan Solusi Algoritma Bee colony yang Dimodifikasi dengan Metode

Perusahaan

  Solusi Makespan (Menit) Keterlambatan (Menit)

  Bee Colony 6270,575 -929,425

  Perusahaan 7095,125 -104,875 Dalam mengaplikasikan solusi yang telah didapatkan, perusahaan disarankan untuk melakukan persiapan dan penyesuaian. Persiapan dan penyesuaian dapat dilakukan dengan cara; melakukan penjadwalan ulang terhadap pekerja dan perawatan mesin, melaukan revisi terhadap target produksi, melakukan pengawasan terhadap proses, pengawasan persediaan bahan baku, pengawasan barang setengah jadi, dan pengawasan akan barang jadi.

  KESIMPULAN

  Berdasarkan hasil penelitian didapatkan bahwa modifikasi yang dilakukan pada tahap

  

forgaging dapat dipakai untuk menyelesaikan permasalaham penjadwalan, sebab modifikasi pada

  tahap forgaging memberikan hasil makespan yang lebih kecil daripada penjadwalan perusahaan saat ini dan memberikan hasil makespan dan urutan pekerjaan yang sama dengan algoritma Bee Chong, Low, Sivakumar, and Gay, 2006. Namun modifikasi pada tahap forgaging

  Colony

  mengakibatkan proses pada tahap waggle dance menjadi berubah dari menilai dan pemilihan solusi menjadi tahap untuk memverifikasi solusi dari inisialisasi awal pada tahap forgaging.

DAFTAR PUSTAKA

  Bedworth. David D. dan Bailey. James E., 1982, Integrated Production Control System , John Wiley and Sons, New York, Hal. 311-314. Cheng, Runwei & Gen, Mitsuo, 1997, Genetic Algorithms and Engineering Design. New York, USA : John Wiley & Sons. Chong. C. S., Low. M. Y. H., Sivakumar. A. I., and Gay. K. L., 2006, “A bee colony optimization algorithm to job shop scheduling,” in Proc. of the 2006 Winter Simulation Conference, 2006, pp. 1954 –1961. Chong. C. S.,

  Low. M. Y. H., Sivakumar. A. I., and Gay. K. L., 2007, “Using a bee colony algorithm for neighborhood search in job shop scheduling problems,” in Proc. of 21st European

  Conference on Modeling and Simulation (ECMS2007) .

  Goodman. E., Hedetniemi. S. T., 1977, Introduction to the Design and Analysis of Algorithms, McGraw-Hill. Karaboga. S. and Basturk. D., 2007, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm”, Journal of Global Optimization, vol. 39, no. 3, pp. 459 –471. Karaboga. S. and Basturk. D., 2008, “On the performance of artificial bee colony (abc) algorithm,”

  Applied Soft Computing, vol. 8, no. 1 , pp. 687 –697.

  Lucic. P. and Teodorovic. D., 2003, “Vehicle routing problem with uncertain demand at nodes: The bee system and fuzzy logic approach,” in Fuzzy Sets in Optimization, J. L. Verdegay, Ed. Berlin / Heidelberg: Springer- Verlag, pp. 67 –82. Nakrani. S. and Tovey. C., 2004, “On honey bees and dynamic server allocation in internet hosting centers,” Adaptive Behavior, vol. 12, no. 3-4, pp. 223–240 Nasution, Arman H., 2003, Perencanaan dan Pengendalian Produksi , Edisi Pertama. Surabaya: Guna Widya. Teodorovic. D., 2008, “Swarm intelligence systems for transportation engineering: Principles and applications,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 6, pp. 651– 657. Von Frisch. K., 1974, “Decoding the language of the bee,” Science, vol. 185, no. 4152, pp. 663– 668.

  Watson, Barbulescu, Howe & Whitley, 1999, ”Algorithm Performance and Problem Structurefor Flow- shop Scheduling”, American Association for Articial Intelligence.

Dokumen baru

Dokumen yang terkait

ANALISIS PERBANDINGAN LAPORAN KEUANGAN KOMERSIAL DAN LAPORAN KEUANGAN FISKAL DALAM RANGKA MENGHITUNG PAJAK PENGHASILAN TERUTANG (Studi Kasus pada CV. Makmur Jaya Mulia di Bandar Lampung) Thontowie Maryanti Syamsu Rizal Abstrak - Analisis Perbandingan Lapo
0
0
16
AUDIT OPERASIONAL DAN MENINGKATKAN EFISIENSI SERTA EFEKTIVITAS PRODUKSI. (Sebuah stusi pada PT. Budi Acid Jaya) Iskandar Imelda Riswan Abstract - Audit Operasional dan Meningkatkan Efisiensi serta Efektivitas Produksi (Sebuah stusi pada PT. Budi Acid Jaya
0
0
20
STUDI PERBANDINGAN NILAI LABA BERSIH ANTARA METODE PENCATATAN PENYUSUTAN YANG DILAKUKAN PERUSAHAHAN DENGAN UU PERPAJAKAN NO. 17 TAHUN 2000: (Kasus pada PT. Dwi Gunung Putera di Bandar Lampung) Gatot Hidayat Daniel Yulian Riswan Abstract - Studi Perbanding
0
0
18
ANALISIS PERHITUNGAN ECONOMIC ORDER QUANTITY (EOQ) DAN PENGARUHNYA TERHADAP PENGENDALIAN PERSEDIAAN BARANG DAGANGAN (Studi Kasus pada PT. Bumi Jaya di Natar) Afrizal Nilwan Yunita Sofyandy Goenawan Abstrak - Analisis Perhitungan Economic Order Quantity (E
0
2
14
ANALISA SISTEM INFORMASI AKUNTANSI DALAM PENGENDALIAN INTERN PENJUALAN DAN PIUTANG (Study Kasus pada CV. Alam Prima Komputer (Sentra Laptop) di Bandar Lampung) Gatot Hidayat Shiauyen Susanriana Yunus Fiscal Abstrak - Analisa Sistem Informasi Akuntansi Dal
0
0
14
Analisis Sistem Pengendalian Intern Dalam Kaitannya Dengan Keamananharta Perusahaan Pada CV. Kencana Jaya Di Bandar Lampung (Study Kasus pada CV. Kencana Jaya di Bandar Lampung)
0
0
18
View of Pengaruh Supervisi Akademik Pengawas Sekolah Terhadap Kinerja Guru Mata Pelajaran IPA di SMPN Tungkal Jaya
1
0
20
DESCRIPTION OF NUTRITIONAL STATUS AND MANY FACTORS THAT INFLUENCE THE NUTRITIONAL STATUS OF CHILDREN WHO HAVE 2-5 YEARS OLD IN FARMER’S FAMILY AT PELANGKI MUARADUA, SOUTH OK
0
0
12
Analisa Harga dan Pemasaran untuk Meningkatkan Profitabilitas UKM Kerajinan Kulit dengan Sistem Dinamik (Studi Kasus: Dwi Jaya Abadi Tanggulangin Sidoarjo)
0
1
5
Analisa Faktor-faktor yang Mempengaruhi Pengembangan Kawasan Wisata Bahari Lhok Geulumpang, Aceh Jaya
0
1
5
Peningkatan Partisipasi Masyarakat Dalam Perbaikan Sanitasi Permukiman Kelurahan Putat Jaya Kota Surabaya
0
0
6
2 8 Ira Martini, Resti Arania, Sariningsih OK
0
0
12
Pendahuluan Latar Belakang - 3 37 Saryono, Octa, Anisa OK
0
0
12
9 91 Faizal A, Diana Fitri, Anggunan OK
0
0
10
7 RANCANG BANGUN PERANGKAT ELEKTRONIK PENAMPIL TEKS DALAM KODE BRAILLE BERBASIS MIKROKONTROLER Hidayat
0
0
7
Show more