REALISTIC MATHEMATICS EDUCATION (RME) DALAM PEMBELAJARAN MATEMATIKA DI SMP Lisna Nurani *) Abstrak - REALISTIC MATHEMATICS EDUCATION (RME) DALAM PEMBELAJARAN MATEMATIKA DI SMP (lisna)

Gratis

0
0
12
1 year ago
Preview
Full text

  

REALISTIC MATHEMATICS EDUCATION (RME) DALAM

  Lisna Nurani *)

  

Abstrak

Realistic Mathematics Education atau pembelajaran matematika realistik

  merupakan suatu pendekatan dalam pembelajaran matematika. Prinsip – prinsip pembelajaran realistik yaitu prinsip aktivasi, prinsip realitas, prinsip berjenjang, prinsip jalinan, prinsip interaksi, dan prinsip bimbingan. Pembelajaran matematika realistik memiliki lima karakteristik, yaitu : menggunakan konteks, menggunakan model, menggunakan konstribusi siswa, adanya interaktivitas, dan adanya integrasi antar topik-topik pembelajaran.

  Kata Kunci : Pendekatan, RME, dan Pembelajaran matematika.

  Pendahuluan

  Pembelajaran merupakan suatu upaya untuk membuat siswa belajar yaitu suatu usaha yang dilakukan oleh guru dalam memilih, menetapkan dan mengembangkan metode untuk mencapai hasil yang diinginkan. Miarso (Akib, 2001) mengemukakan bahwa pembelajaran menaruh perhatian pada bagaimana membelajarkan siswa bukan pada apa yang dipelajari siswa. Hal ini berarti pembelajaran pada hakekatnya merupakan suatu rancangan membelajarkan siswa.

  Dalam pembelajaran matematika di sekolah, guru hendaknya memilih menggunakan strategi, pendekatan, metode dan teknik yang banyak melibatkan siswa secara aktif dalam belajar baik secara mental, fisik, maupun sosial. Prinsip belajar aktif inilah yang diharapkan menumbuhkan sasaran pembelajaran matematika yang kreatif dan kritis untuk membantu siswa membangun sendiri konsep dan prinsip yang dipelajarinya.

  Pendekatan pembelajaran matematika adalah cara yang ditempuh guru dalam pelaksanaan pembelajaran agar konsep yang disajikan dapat diadaptasikan oleh siswa. Pendekatan ini pertama kali diperkenalkan dan berkembang di Belanda pada tahun 1970 oleh Institut Freudenthal. Pada awalnya istilah realistic oleh Freudenthal (1971) dimaksudkan sebagai ide untuk mengembangkan matematika sebagai aktivitas manusia, karena itu harus dikaitkan dengan kehidupan sehari-hari. Di Indonesia RME dikenal dengan istilah Pendidikan Matematika Realistik Indonesia (PMRI)

  Pembelajaran matematika selama ini terlalu dipengaruhi pandangan bahwa matematika adalah alat yang siap pakai. Pandangan ini mendorong guru bersikap cenderung memberi tahu konsep/ sifat/ teorema dan cara menggunakannya. Guru cenderung mentransfer pengetahuan yang dimiliki ke pikiran anak dan anak menerimanya secara pasif dan tidak kritis. Adakalanya siswa menjawab soal dengan benar namun mereka tidak dapat mengungkapkan alasan atas jawaban mereka. Siswa dapat menggunakan rumus tetapi tidak tahu dari mana asalnya rumus itu dan mengapa rumus itu digunakan. Keadaan demikian mungkin terjadi karena di dalam proses pembelajaran tersebut siswa kurang diberi kesempatan dalam mengungkapkan ide-ide dan alasan jawaban mereka sehingga kurang terbiasa untuk mengungkapkan ide-ide atau alasan dari jawabannya. Perubahan cara berpikir yang perlu sejak awal diperhatikan ialah bahwa hasil belajar siswa merupakan tanggung jawab siswa sendiri. Artinya bahwa hasil belajar siswa dipengaruhi secara langsung oleh karakteristik siswa sendiri dan pengalaman belajarnya. Tanggung jawab langsung guru sebenarnya pada penciptaan kondisi belajar yang memungkinkan siswa memperoleh pengalaman belajar yang baik (Marpaung,dalam P TK 2010). Pengalaman belajar akan

  4

  terbentuk apabila siswa ikut terlibat dalam pembelajaran yang terlihat dari aktivitas belajarnya.

  Realistic Mathematics Education menekankan kepada pemecahan masalah

  melalui hal-hal yang kontekstual (Gravemeijer,dalam Jalal 2003). Pendekatan ini mampu menopang proses penemuan kembali (reinvention) atau penemuan

  

(invention). Dalam pembelajaran matematika realistic, siswa dituntut untuk saling

  bernegosiasi, kooperasi, dan intervensi baik siswa dengan siswa maupun antara siswa dengan guru (de Lange dalam Jalal , 2003). Kegiatan seperti ini sangat penting dalam mengantarkan cara bermatematisasi siswa dari segi informal menjadi pemahaman matematika secara formal (Gravemeijer, dalam Jalal 2003).

  Pendidikan Matematika Realistik Indonesia (PMRI) tidak dapat dipisahkan dari institude Freudenthal. Institut ini didirikan pada tahun 1971, berada di bawah Utrecht University Belanda. Nama institut diambil dari nama pendirinya yaitu Profesor Hans Freudenthal (1905-1990), seorang penulis, pendidik dan matematikawan berkebangsaan Jerman-Belanda. Sejak tahun 1971, Institut ini mengembangkan suatu pendekatan teoritis terhadap pembelajaran matematika yang dikenal dengan RME (Realistic Mathematics Education). RME menggabungkan pandangan tentang apa itu matematika, bagaimana siswa belajar matematika dan bagaimana matematika harus diajarkan (Hadi, dalam Hammad 2009).

  PMRI juga menekankan untuk membawa matematika pada pengajaran bermakna dengan mengkaitkannya dalam kehidupan nyata sehari-hari yang bersifat realistik. Siswa disajikan masalah-masalah kontekstual, yaitu masalah- masalah yang berkaitan dengan situasi realistik. Kata realistik disini dimaksudkan sebagai suatu situasi yang dapat dibayangkan oleh siswa atau menggambarkan situasi dalam dunia nyata (Zulkarnain, dalam Hammad 2009).

  Berkaitan dengan pembelajaran matematika, Soedjadi (Akib, 2001) mengemukakan bahwa tujuan pembelajaran matematika di sekolah pada dasarnya terdiri dari tujuan formal dan tujuan material. Tujuan formal menekankan pada penataan nalar dan pembentukan sikap, sedang tujuan material menekankan pada kemampuan menerapkan matematika dan keterampilan matematika. Hal ini menunjukkan bahwa pembelajaran matematika di sekolah tidak cukup hanya melatih keterampilan berhitung dan menghafal fakta tetapi juga menekankan pada kemampuan penalaran. Sedangkan Nickson (Akib, 2001) mengatakan bahwa pembelajaran matematika adalah suatu upaya membantu siswa untuk mengkonstruksi konsep-konsep atau prinsip-prinsip matematika dengan keterampilannya sendiri melaui internalisasi sehingga konsep atau prinsip itu terbangun kembali Pendidikan matematika realistik dikembangkan berdasarkan pemikiran

  Hans Freudenthal yang berpendapat bahwa matematika merupakan aktivitas insani (human activities) yang harus dikaitkan dengan realitas. Berdasarkan pemikiran tersebut, PMRI mempunyai ciri antara lain bahwa dalam proses pembelajaran siswa harus diberikan kesempatan untuk menemukan kembali (to reinvent) matematika melalui bimbingan guru, dan bahwa penemuan kembali (reinvention) ide dan konsep matematika tersebut harus dimulai dari penjelajahan berbagai situasi dan persoalan “dunia riil” (Hadi,dalam Hammad 2009). Freudenthal berkeyakinan bahwa siswa tidak boleh dipandang sebagai penerima pasif matematika yang sudah jadi. Menurutnya pendidikan harus mengarahkan siswa kepada penggunaan berbagai situasi dan kesempatan untuk menemukan kembali matematika dengan cara mereka sendiri. Banyak soal yang dapat diangkat dari berbagai konteks (situasi) yang dirasakan bermakna sehingga menjadi sumber belajar.

  Konsep matematika muncul dari proses matematisasi, yaitu dimulai dari penyelesaian yang berkait dengan konteks (context link solution), siswa secara perlahan mengembangkan alat dan pemahaman metematik ke tingkat yang lebih formal. Model-model yang muncul dari aktivitas matematik siswa akan dapat mendorong terjadinya interaksi di kelas sehingga mengarah pada level berpikir matematik yang lebih tinggi.

  Teori PMRI sejalan dengan teori belajar yang berkembang saat ini, seperti kontruktivisme dan pembelajaran kontekstual (contextual teaching and learning, disingkat CTL). Namun, baik pendekatan konstruktivisme maupun CTL mewakili teori belajar secara umum. PMRI merupakan suatu teori pembelajaran yang dikembangkan khusus untuk matematika. Selanjutnya juga diakui bahwa konsep pendidikan matematika realistik sejalan dengan kebutuhan untuk memperbaiki pendidikan matematika di Indonesia yang didominasi oleh persoalan bagaimana meningkatkan pemahaman siswa tentang matematika dan mengembangkan daya nalar (Hadi dalam Hammad 2009).

  Paradigm baru dalam pembelajaran sekarang ini khususnya PMRI menekankan terhadap proses pembelajaran dimana aktivitas siswa dalam mencari, menemukan dan membangun sendiri pengetahuan yang dia perlukan benar-benar menjadi pengalaman belajar tersendiri bagi setiap individu. Menurut De Lange, pembelajaran matematika dengan pendekatan PMRI meliputi aspek – aspek berikut ; (Hadi, dalam Hammad 2009) a) Memulai pelajaran dengan mengajukan masalah (soal) yang “riil” bagi siswa sesuai dengan pengalaman dan tingkat pengetahuannya sehingga siswa segera terlibat dalam pembelajaran secara bermakna.

  b) Permasalahan yang diberikan tentu harus diarahkan sesuai dengan tujuan yang ingin dicapai dalam pelajran tersebut.

  c) Siswa mengembangkan atau menciptakan model-model simbolik secara informal terdapat persoalan/ masalah yang diajukan.

  d) Pengajaran berlangsung secara interaktif : siswa menjelaskan dan memberikan alasan terhadap jawaban yang diberikannya, memahami jawaban temannya

  (siswa lain), setuju terhadap jawaban temannya, menyatakan ketidaksetujuan, mencari alternatif penyelesaian yang lain dan melakukan refleksi terhadap setiap langkah yang ditempuh atau terhadap hasil pelajaran.

  Paradigma baru pendidikan sekarang ini juga lebih menekankan pada peserta didik sebagai manusia yang memiliki potensi untuk belajar dan berkembang. Dalam PMRI, siswa dipandang sebagai seseorang yang memiliki pengetahuan dan pengalaman sebagai hasil interaksi dengan lingkungannya sehingga siswa dapat mengembangkan pengetahuan tersebut apabila diberikan kesempatan untuk mengembangkannya.

  Matematisasi dalam pembelajaran matematika realistik merupaka proses yang sangat penting. Treffer (Hamzah, 2004) membedakan matematisasi ke dalam dua tipe yaitu matematisasi horisontal dan matematisasi vertikal. Matematisasi horisontal berkaitan dengan perubahan dunia nyata menjadi simbol-simbol dalam matematika atau masalah matematika sedangkan matematisasi vertikal berhubungan dengan perubahan simbol-simbol ke simbol matematika lainnya atau penyelesaian masalah menggunakan sejumlah aturan-aturan matematika yang sesuai

  Dua proses matematisasi yang dirumuskan oleh Treffers (Hamzah, 2004) dalam pembelajaran realistik, yaitu: a. Matematisasi horizontal

  Proses matematika pada tahapan mengubah persoalan sehari-hari menjadi persoalan matematika sehingga dapat diselesaikan atau situasi nyata diubah kedalam simbol-simbol dan model-model matematika. Atau proses dimana murid dengan pengetahuan yang dimilikinya (mathematica tools) dapat mengorganisasikan dan memecahkan masalah nyata dalam kehidupan sehari-hari, contohnya: pengidentifikasian, perumusan, pentransformasian masalah dunia real ke masalah matematik.

  b. Matematisasi vertikal Proses matematika pada tahap penggunaan simbol, lambang kaidah- kaidah matematika yang berlaku secara umum. Atau kegiatan memformulasikan masalah matematika kedalam beragam penyelesaian matematika melalui sejumlah prinsip atau aturan yang ada dalam matematika.

  Atau proses reorganisasi dalam sistem matematika itu sendiri, misalnya: menemukan cara singkat dalam hubungan antara konsep-konsep dan strategi- strategi kemudian menerapkan strategi itu, representase hubungan-hubungan dalam rumus, perbaikan dan penyesuaian model matematik, penggunaan model-model yang berbeda, dan pengggeneralisasian.

  Dengan kata lain matematisasi horizontal berkaitan dengan perubahan dunia nyata menjadi simbol-simbol dalam matematisasi sedangkan matematika vertikal berkaitan dengan pengubahan simbol-simbol ke simbol-simbol matematika lainnya.

  Menurut Turmudi (Hamzah, 2004:30) aktivitas yang terdapat pada kegiatan matematisasi horizontal dan vertikal adalah: a. Aktivitas dalam matematisasi horizontal, yaitu: i. Mengidentifikasi masalah matematika ke dalam konteks yang lebih umum ii. Mengadakan penskemaan. iii. Merumuskan dan memvisualisasikan masalah kedalam cara yang berbeda. iv. Menemukan relasi (hubungan). v. Menemukan keteraturan. vi. Mengenal aspek isomorfik dalam masalah-masalah yang berbeda. vii. Mentransfer real world problem kedalam mathematical probblems. viii. Mentransfer real world problem kedalam model matematika yamg sesuai b. Aktivitas dalam matematisasi vertikal, yaitu: i. Menyatakan suatu hubungan dalam suatu rumus. ii. Membuktikan keteraturan. iii. Membetulkan dan menyesuaikan model. iv. Menggunakan model-model yang berbeda. v. Mengkombinasikan dan mengintegrasikan model. vi. Merumuskan konsep matematika baru. vii. Menggeneralisasikan.

  Berdasarkan proses matematisasi di atas, Treffers (Fauzan, 2001:3) membedakan empat pendekatan dalam pendidikan matematika, yaitu: mekanistik,

  

strukturalistik, empiristik dan realistik. Pendekatan mekanistik adalah pendekatan

  yang tidak memberi perhatian terhadap matematisasi horizontal dan matematisasi vertikal. Sedangkan pendekatan strukturalistik hanya terfokus pada matematisasi vertikal dan mengabaikan matematisasi horizontal. Sebaliknya, pendekatan empiristik hanya menekankan pada matematisasi horizontal, tetapi kurang memperhatikan matematisasi vertikal. Terakhir, pendekatan realistik adalah pendekatan yang menggunakan kedua proses matematisasi untuk membentuk proses belajar jangka panjang.

  Pembelajaran matematika dengan pendekatan realistik merupakan salah satu usaha meningkatkan kemampuan siswa memahami matematika, karena dalam falsafah realistik dunia nyata digunakan sebagai titik pangkal permulaan dalam mengembangkan konsep-konsep dan gagasan matematika (Suherman, 2003).

  Prinsip – Prinsip Pembelajaran Realistik

  Sejalan dengan konsep asalnya, PMRI dikembangkan dari tiga prinsip dasar yang mengawali RME, yaitu: guided reinvention and progressive

  

mathematization, didactical phenomenology, serta self-developed models

  (Marpaung, dalam P

  4 TK 2010). Prinsip RME menurut Van den Heuvel–

  Panhuizen dalam P

  4 TK 2010 P 4 TK 2010) adalah sebagai berikut.

  a. Prinsip aktivitas, yaitu matematika adalah aktivitas manusia. Pembelajar harus aktif baik secara mental maupun fisik dalam pembelajaran matematika.

  b. Prinsip realitas, yaitu pembelajaran seyogyanya dimulai dengan masalah- masalah yang realistik atau dapat dibayangkan oleh siswa.

  c. Prinsip berjenjang, artinya dalam belajar matematika siswa melewati berbagai jenjang pemahaman, yaitu dari mampu menemukan solusi suatu masalah kontekstual atau realistik secara informal, melalui skematisasi memperoleh pengetahuan tentang hal-hal yang mendasar sampai mampu menemukan solusi suatu masalah matematis secara formal.

  d. Prinsip jalinan, artinya berbagai aspek atau topik dalam matematika jangan dipandang dan dipelajari sebagai bagian-bagian yang terpisah, tetapi terjalin satu sama lain sehingga siswa dapat melihat hubungan antara materi-materi itu secara lebih baik.

  e. Prinsip interaksi, yaitu matematika dipandang sebagai aktivitas sosial.

  Siswa perlu dan harus diberikan kesempatan menyampaikan strateginya dalam menyelesaikan suatu masalah kepada yang lain untuk ditanggapi, dan menyimak apa yang ditemukan orang lain dan strateginya menemukan itu serta menanggapinya.

  f. Prinsip bimbingan, yaitu siswa perlu diberi kesempatan untuk menemukan (re-invention) pengetahuan matematika secara terbimbing.

  Kerangka pembelajaran matematika dengan pendekatan realistic mempunyai dua kelebihan. Menuntut siswa dari keadaan yang sangat konkrit (melalui proses matematisasi horizontal, matematika dalam tingkatan ini adalah matematika informal). Biasanya para siswa dibimbing oleh masalah – masalah kontekstual. Dalam falsafah realistic, dunia nyata digunakan sebagai titik pangkal permulaan dalam pengembangan konsep-konsep dan gagasan matematika. Menurut Treffers dan Goffree 1985, dalam Erman dkk, 2003) bahwa masalah kontekstual dalam kurikulum realistic berguna untuk mengisi sejumlah fungsi.

  a) Pembentukan konsep: Dalam fase pertama pembelajaran, para siswa diperkenankan untuk masuk ke dalam matematika secara alamiah dan temotivasi

  b) Pembentukan model : masalah-masalah kontekstual nenasuki pondasi siswa untuk belajar operasi, prosedur, notasi, aturan dan mereka mengerjakan ini dalam kaitannya dengan model – model lain yang kegunaannya sebagai pendorong penting dalam berfikir c) Keterterapan : masalah kontekstual menggunakan ‘reality’ sebagai sumber dan domain untuk terapan.

  d) Praktek dan latihan dari kemampuan spesifik dalam situasi terapan.

  Karakteristik Pembelajaran Realistik

  Karakteristik RME adalah menggunakan: konteks dunia nyata, model- model, produksi dan kontruksi murid, interaktif, dan keterkaitan (intertwinment) (Treffers dalam Suharta, 2004:3).

  a. Menggunakan Konteks Dunia Nyata Dalam Realistic Mathematics Education, pembelajaran diawali dengan masalah kontekstual (dunia nyata), sehingga memungkinkan mereka menggunakan pengalaman sebelumnya secara langsung. Proses penyarian (inti) dari konsep yang sesuai situasinya dinyatakan oleh De Lange (Suharta, 2004:3) sebagai matematisasi konseptual (pada Skema 1). Melalaui abstraksi dan formalisasi murid akan mengembangkan konsep yang lebih komplit.

  Kemudian, murid dapat mengaplikasikan konsep-konsep matematika kebidang baru dari dunia nyata (applied mathematization). Oleh karena itu, untuk menjembatani konsep-konsep matematika dengan pengalaman anak sehari-hari perlu diperhatikan matematisasi pengalaman sehari-hari

  (mathematization of every dayexperience) dan penerapan matematika dalam sehari-hari (Cinzia Bonotto dalam Suharta, 2004:3).

  

Skema 1 Konsep Matematisasi De Lange

  b. Menggunakan model-model Istilah model berkaitan dengan model situasi dan model matematik yang dikembangkan oleh murid sendiri (self developed models). Peran self

  developed models merupakan jembatan bagi murid dari situasi real ke situasi

  abstrak atau dari matematika informal ke matematika formal. Artinya murid membuat model sendiri dalam menyelesaikan masalah. Pertama adalah model situasi yang dekat dengan dunia nyata murid.

  c. Menggunakan Kontribusi Murid Streefland (Suharta, 2004:3) menekankan bahwa dengan pembuatan produksi bebas murid terdorong untuk melakukan refleksi pada bagian yang mereka anggap penting dalam proses belajar. Strategi-strategi informal murid yang berupa prosedur pemecahan masalah kontekstual merupakan sumber inspirasi dalam pengembangan pembelajaran lebih lanjut yaitu untuk mengkonstruksi pengetahuan matematika formal.

  d. Menggunakan Interaktif Interaksi antar murid dan guru merupakan hal yang mendasar dalam

  

Realistic Mathematics Education. Secara eksplisit bentuk-bentuk interaksi

  berupa negosiasi, penjelasan, pembenaran, setuju, tidak setuju, pertanyaan atau refleksi digunakan untuk mencapai bentuk formal dari bentuk-bentuk informal murid.

  e. Menggunakan Keterkaitan (Interwinment) Dalam Realistic Mathematics Education pengintegrasi unit-unit matematika adalah esensial. Jika dalam pembelajaran kita mengabaikan keterkaitan dengan bidang yang lain, maka akan berpengaruh pada pemecahan masalah. Dalam mengaplikasikan matematika, biasanya diperlukan pengetahuan yang lebih kompleks, dan tidak hanya aritmetika, aljabar, atau geometri tetapi juga bidang lain.

  Adapun langkah-langkah penerapan Matematika Realistik dalam kegiatan belajar mengajar di kelas adalah sebagai berikut (Suharta, 2001:6):

  Aktivitas Guru Aktivitas murid

  1. Guru memberikan murid masalah

  1. Murid secara sendiri atau kelompok kontekstual kecil mengerjakan masalah dengan strategi-strategi informal

  2. Guru merespon secara positif jawaban

  2. Murid memberikan jawaban sesuai murid. Murid diberikan kesempatan yang telah dipikirkan. untuk memikirkan strategi yang paling efektif

  3. Guru mengarahkan murid pada

  3. Murid secara sendiri-sendiri atau beberapa masalah kontekstual dan kelompok menyelesaikan masalah selanjutnya meminta murid tersebut. mengerjakan masalah dengan pengalaman mereka.

  4. Guru mengelilingi murid memberikan

  4. Beberapa murid mengerjakan di bantuan seperlunya. papan tulis. Melalui diskusi kelas, jawaban murid dikonfrontasikan.

  5. Guru mengenalkan istilah konsep.

  5. Murid merumuskan bentuk matematika formal.

  6. Guru memberikan tugas dirumah yaitu

  6. Murid mengerjakan tugas rumah mengerjakan soal atau membuat dan menyerahkan kepada guru. masalah cerita beserta jawabannya yang sesuai dengan matematika formal.

  Sejalan dengan langkah-langkah penerapan matematika realistik dalam kegiatan belajar mengajar di atas, Hadi, dalam Suraedah 2008 mengemukakan beberapa konsepsi tentang murid, tentang guru dan tentang pembelajaran yang diuraikan berikut, mempertegas bahwa pembelajaran melalui pendekatan matematika realistik sejalan dengan paradigma pendidikan, sehingga patut untuk dikembangkan.

  Konsepsi pendekatan matematika realistik tentang murid, sebagai berikut: (1) Murid mempunyai seperangkat konsep alternatif tentang ide-ide matematika yang mempengaruhi belajar selanjutnya, (2) Murid memperoleh pengetahuan baru yang membentuk pengetahuan itu untuk dirinya sendiri yang berasal dari seperangkat ragam pengalaman, (3) Murid tanpa memandang ras, budaya dan jenis kelamin mampu memahami dan mengerjakan soal matematika.

  Konsepsi pendekatan matematika realistik tentang guru di sekolah, sebagai berikut; (1) Guru sebagai fasilitator belajar, (2) Guru harus mampu membangun pembelajaran yang interaktif, (3) Guru harus memberikan kesempatan kepada murid secara aktif dan membantu murid menafsirkan persoalan riil, dan

  (4) Guru tidak terlepas pada materi dalam kurikulum tetap aktif mengaitkan materi kurikulum dengan dunia riil baik fisik maupun mental. Konsepsi dalam pembelajaran matematika, sebagai berikut :

  (1) Memulai pelajaran dengan menggunakan masalah riil bagi murid sesuai dengan pengalaman dan tingkat pengetahuannya, sehingga murid segera terlibat dalam pembelajaran secara bermakna,

  (2) Permasalahan yang diberikan harus diarahkan agar sesuai dengan murid dan tujuan yang ingin dicapai dalam pelajaran itu, (3) Murid mengembangkan atau membuat model-model simbolik secara informal terhadap persoalan atau masalah yang diajukan,

  Pengajaran berlangsung secara interaktif, murid menjelaskan dan memberikan alasan terhadap jawaban yang diberikan, memahami jawaban temannya, setuju terhadap jawaban yang diberikannya, menyatakan ketidaksetujuan, mencari alternatif penyelesaian yang lain, dan melakukan refleksi terhadap setiap langkah yang ditempuh atau terhadap hasil belajar.

  Masalah realistik’ atau ‘masalah kontekstual’ adalah masalah yang diajukan guru pada awal kegiatan atau selama kegiatan pembelajaran sedang berlangsung sehingga ide matematikanya dapat muncul dari masalah tersebut. Masalah realistik yang disajikan guru pada awal kegiatan merupakan inti dari proses fasilitasi guru agar siswanya dapat membangun sendiri pengetahuannya. Siswa difasilitasi untuk belajar menemukan sendiri ide atau pengetahuannya sambil belajar memecahkan masalah realistik yang ada. Sesuai dengan karakteristik PMRI, langkah ini tentunya sangat sesuai dengan lampiran dokumen Standar Isi pada Permendiknas Nomor 22 Tahun 2007 menyatakan bahwa: ”Pembelajaran matematika hendaknya dimulai dengan pengenalan masalah yang sesuai dengan situasi.” Dengan mengajukan masalah realistik, siswa tidak langsung diberi tahu gurunya tentang langkah-langkah pembagian bersusun ke bawah, namun ia harus belajar menemukan sendiri cara pembagian berekor tersebut seperti yang dilakukan matematikawan ketika sang matematikawan menemukan pengetahuan tersebut.

  Dengan proses seperti itulah, para siswa dilatih untuk tidak hanya menerima sesuatu yang sudah jadi seperti layaknya diberi seekor ikan yang dapat langsung dimakan selama sehari saja, namun mereka dilatih untuk memecahkan masalah secara mandiri seperti layaknya belajar cara menangkap ikan sehingga ia bisa makan ikan untuk seumur hidupnya. Cara-cara ini akan sangat berguna bagi para siswa tersebut di kelak kemudian hari, ketika mereka duduk di jenjang pendidikan yang lebih tinggi maupun di tempat kerjanya. Alasannya, cara-cara tersebut dapat ditansfer pada situasi lain

  Dengan menggunakan masalah realistik siswa tidak langsung diberi tahu oleh guru tentang langkah – langkah dalam menyelesaikan soal tetapi siswa menemukan sendiri cara penyelesaiannnya. Dengan proses seperti itu para siswa di latih untuk tidak hanya menerima sesuatu yang sudah jadi namun mereka dilatih untuk memecahkan masalah secara mandiri. Masalah realistik adalah masalah yang diajukan guru pada awal kegiatan atau selama pelaksanaan pembelajaran sedang berlangsung sehingga ide matematikanya dapat muncul dari masalah yang diberikan. Masalah realistik yang diajukan guru pada awal kegiatan pembelajaran merupakan inti dari proses fasilitasi guru agar siswanya dapat membangun sendiri pengetahuannnya. Siswa difasilitasi untuk belajar menemukan sendiri idea atau pengetahuannya sambil belajar memecahkan masalah realistik yang ada.

  Pengajuan masalah realistik sangatlah penting; namun bagi sebagian guru tidaklah mudah untuk merancangnya. Untuk menyusunnya, beberapa cara yang dapat dilakukan di antaranya adalah: (a) mencari soal-soal penerapan pada buku pelajaran matematika, lalu menetapkan soal yang ide matematikanya dapat dimunculkan dari soal tersebut, (b) mencari di internet, atau pun (c) mengikuti kegiatan lesson study yang merupakan tempat bertemunya para guru untuk meningkatkan profesionalisme mereka. Berikut ini adalah contoh masalah realistik atau masalah kontekstual tentang luas bangun datar.

  Siswa diminta untuk mengemukakan rumus luas bangun di atas dengan caranya sendiri. Sebagai contoh, beberapa cara menentukan luas persegi panjang di atas adalah dengan: (1) membilang dari 1 sampai dengan 12, (2) menjumlahkan, yaitu: 4 + 4 + 4 atau 3 + 3 + 3 + 3, atau (3) mengalikan, yaitu: 3 × 4 atau 4 × 3. Dengan masalah kontekstual seperti di atas, para siswa dapat difasilitasi dan melakukan kegiatan eksplorasi. Dari setiap bangun datar di atas, cara yang digunakan siswa untuk menentukan luasnya dapat berbeda atau sama. Ketika mencari luas daerah layang-layang, alternatif cara termudah yang dapat ditemukan siswa adalah dengan menggambarkannya seperti gambar di bawah ini. Luas layang-layang adalah setengah luas persegi panjangnya; sehingga luas layang-layang adalah separuh dari d

  1 × d 2 , di mana d 1 dan d 2 adalah

  diagonal layang-layang tersebut. Sekali lagi, dengan masalah kontekstual di atas, siswa diharapkan dapat menemukan sendiri rumus-rumus tentang luas bangun datar tersebut. Guru hanya memfasilitasi, misalnya dengan mengajukan pertanyaan-pertanyaan untuk mengarahkan.

  Penutup Kesimpulan

  Realistik Mathematics education (RME) atau pendekatan realistik pada pembelajaran matematika menggunakan masalah kontekstual sebagai titik awal pembelajaran. Masalah realistik atau masalah kontekstual adalah masalah yang berkait dengan kehidupan nyata sehari-hari, mata pelajaran lain, ataupun rekaan guru sendiri yang dapat diterima siswa sedemikian rupa sehingga ide matematikanya dapat muncul dari masalah tersebut.

  Karakteristik RME atau PMRI yang pada intinya mengungkapkan bahwa matematika merupakan aktivitas insani sehingga pembelajaran matematika tidak dapat dipisahkan dari segala sesuatu yang dekat dengan siswa. Pendidikan matematika diarahkan pada penggunaan berbagai situasi dan kesempatan yang memungkinkan siswa menemukan kembali matematika berdasarkan usaha mereka sendiri.

  Saran

  1. Pendekatan realistik dapat dijadikan sebagai salah satu alternatif pendekatan dalam melaksanakan pembelajaran matematika di sekolah agar murid dapat mengalami proses belajar yang lebih bermakna.

  2. Pendekatan realistik sebaiknya lebih sering digunakan dan diimplementasikan secara bertahap oleh guru-guru matematika pada saat proses pembelajaran berlangsung, sehingga murid dapat lebih mudah mengerti dan menganggap bahwa matematika merupakan pelajaran yang menyenangkan.

  3. Guru matematika perlu menguasai beberapa pendekatan dan metode pembelajaran sehingga pelaksanaan pembelajaran dapat lebih bervariasi sehingga murid tidak merasa bosan dalam belajar dan akan lebih mudah memahami materi. .

  DAFTAR PUSTAKA Akib, Irwan. 2001. Analisis Kesulitan Mahasiswa Dalam Memahami Konsep-

  Konsep Dalam Struktur Aljabar. Eksponen Jurnal Pendidikan

  Matematika dan Matematika Vol. 3 No. 2 Hal 143-151 Fauzan, Ahmad. 2001. Pendidikan Matematika Realistik: Suatu Alternatif

  Menyongsong Otonomi Pendidikan. Makalah. Disajikan dalam Seminar Nasional ”Realistic Mathematics Education (RME)”. Jurusan Matematika FMIPA UNESA, tanggal 24 Feb 2001.

  Mulbar, Jalaluddin. 2003. Realistic Mathematics Education (RME) dan

  Matematika Modern (New Mathematics). Eksponen Jurnal Pendidikan

  Matematika dan Matematika Vol 4 No.3. Hal 218 - 228 P TK Matematika. 2010. Pembelajaran Matematika Dengan Pendekatan

  Ramadhan, Hammad. 2009. Pendidikan Matematika Realistik Indonesia (PMRI)

  Indonesia. (http : //h4mm4d.wordpress.com/2009/02/27/pendidikan- matematika-realistik-pmri-indonesia.htm) Suharta, I Gusti Putu. 2004. Matematika Realistik: Apa dan Bagaimana?.

  (Online),

  Suharta, I Gusti Putu. 2001. Pembelajaran Pecahan dalam Matematika Realistik.

  Makalah. Disajikan dalam Seminar Nasional ”Realistic Mathematics

  Education (RME)”. Jurusan Matematika FMIPA UNESA, tanggal 24 Feb 2001. Suherman, Erman dkk. 2003. Strategi Pembelajaran Matematika Kontemporer.

  JICA. Bandung Suraedah. 2008. Peningkatan Pencapaian Ketuntasan Belajar Matematika Pokok

  Bahasan Sifat – Sifat Bangun dan Hubungan antar Bangun Melalui Pembelajaran Realistik Pada Murid kelas V SDN 67/I Rappokalling Makassar. Skripsi. Tidak Dipublikasikan. FMIPA UNM Makassar.

  Makassar . Upu, Hamzah. 2004. Mensinergikkan Pembelajaran Matematika Dengan Bidang

  Lain. Makassar: Pustaka Ramadhan Upu, Hamzah. 2004. Mensinergikkan Pembelajaran Matematika Dengan Bidang Lain. Makassar: Pustaka

  Ramadhan

Dokumen baru

Dokumen yang terkait

PENGEMBANGAN WILAYAH DAN PENATAAN RUANG DI INDONESIA : TINJAUAN TEORITIS DAN PRAKTIS1 Oleh : DIRJEN KIMTARU (www.kimpraswil.go.id) ABSTRAK - TATA RUANG DAN PENGEMBANGAN WILAYAH
0
0
14
Pengaruh Pencemaran Sampah Terhadap Kualitas Air Tanah Dangkal Di TPA ( Tempat Pembuangan Akhir ) Mojosongo Kota Surakarta Oleh : Bhian Rangga JR NIM K 5410012 P. Geografi FKIP UNS A. PENDAHULUAN - MAKALAH PENGARUH PENCEMARAN SAMPAH TERHADAP KUALITAS AIR
0
0
5
Makalah Teori Lokasi Industri : Teori Neoklasik, Teori Keperilakuan, Dan Teori Instritusional Oleh : Bhian Rangga J.R Prodi Geografi FKIP UNS A. Pendahuluan - MAKALAH TEORI NEOKLASIK TEORI KEPERILAKUAN DAN TEORI INSTRITUSIONAL
0
0
9
ANALISIS MODEL PERTUMBUHAN INTERREGIONAL DI PROPINSI DAERAH ISTIMEWA YOGYAKARTA
0
0
11
BAB II PEMBAHASAN A. Sekilas Pemanasan Global dan Lubang Ozon - PEMBAHASAN
0
0
12
DESA TERTINGGAL DAN PENANGGULANGANNYA DI JABAR
0
0
56
Latar Belakang - Peningkatan Hasil Belajar Matematika melalui Penerapan (aisyah)
0
0
20
SPREADSHEET EXCEL SEBAGAI MEDIA PEMBELAJARAN PERSAMAAN GARIS LURUS (asnawi)
0
0
9
1. Hirarki belajar - Alat Peraga Whiteboard Kartesius (asnawi)
0
0
10
MENINGKATKAN HASIL BELAJAR MATEMATIKA BANGUN RUANG SISI LENGKUNG MELALUI PENERAPAN MPP (budi)
0
0
10
PEMBELAJARAN BILANGAN BULAT KELAS VII PADA TINGKAT SMP OLEH : SITTI HAFIANAH AZIS,S.Pd ABSTRAK - PEMBELAJARAN BILANGAN BULAT KELAS VII SMP (hafiana)
0
0
17
MENINGKATKAN HASIL BELAJAR SISWA KELAS VIII.A MTs DDI PADANGLAMPE DALAM MELAKUKAN OPERASI PERKALIAN BENTUK ALJABAR DENGAN MENGGUNAKAN TABEL Oleh: SITTI HAFIANAH AZIS,S.Pd ABSTRAK - PENGGUNAAN TABEL PD OPERASI PERKALIAN BENTUK ALJABAR (hafiana)
0
0
10
Latar Belakang - PEMBELAJARAN BERBASIS MASALAH (wana)
0
0
13
ASAS-ASAS DIDAKTIK DALAM PEMBELAJARAN MATEMATIKA (isni)
0
0
16
Peningkatan Hasil Belajar Pada Materi Perkalian Aljabar Dengan Menggunakan Alat Peraga Blokar (Penelitian Tindakan pada Siswa Kelas VII SMPN 3 Satap Balocci) Lisna Nurani ABSTRAK - Peningkatan Hasil Belajar Pada Materi Perkalian Aljabar Dengan Menggunakan
1
0
8
Show more