PENGARUH PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN REPRESENTASI DAN MINAT BELAJAR MATEMATIKA SISWA SMK NEGERI 11 MEDAN.

Gratis

0
3
48
2 years ago
Preview
Full text
PENGARUH PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN REPRESENTASI DAN MINAT BELAJAR MATEMATIKA SISWA SMK NEGERI 11 MEDAN TESIS Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Magister Pendidikan Program Studi Pendidikan Matematika Oleh: RANI SARI IRWANITA DAMANIK (8106172016) PROGRAM PASCASARJANA UNIVERSITAS NEGERI MEDAN UNIMED 2014 ABSTRAK RANI SARI IRWANITA DAMANIK. Pengaruh Pembelajaran Berbasis Masalah Terhadap Kemampuan Representasi dan Minat Belajar Matematika Siswa SMK Negeri 11 Medan, Tesis. Medan. 2013. Program Studi Pendidikan Matematika, Pasca Sarjana, Universitas Negeri Medan Kata Kunci: Pembelajaran berbasis Masalah, Representasi Matematik, Minat Tujuan penelitian ini adalah: (1) Mengetahui kemampuan representasi matematik siswa yang memperoleh pendekatan pembelajaran berbasis masalah lebih baik daripada kemempuan representasi matematik siswa yang memperoleh pembelajaran biasa. (2) Untuk mengetahui minat belajar siswa terhadap matematika yang memperoleh pembelajaran berbasis masalah lebih baik daripada minat belajar siswa yang memperoleh pembelajaran biasa. (3) Untuk mengetahui interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa. (4)Untuk mengetahui bagaimana proses penyelesaian masalah representasi matematika siswa dalam menyelesaikan masalah. Penelitian ini adalah penelitian semi eksperimen yang dilaksanakan di SMK Negeri 11 Medan. Kelompok eksperimen dan kelompok kontrol dipilih secara acak. Dua kelas diambil secara acak dari masing-masing sekolah sebagai kelas eksperimen dan kelas kontrol. Kelas eksperimen memperoleh pembelajaran berbasis masalah dan kelas kontrol dengan pembelajaran biasa. Data hasil kemampuan representasi dan minat matematika siswa, melihat interaksi antara model pembelajaran terhadap kemampuan representasi dan minat matematis siswa diuji dengan ANAVA dua jalur menggunakan uji Kolmogorov-Smirnov. Hasil penelitian menunjukkan bahwa: Berdasarkan hasil analisis dan analisis data ditemukan bahwa ada pengaruh pembelajaran berbasis masalah terhadap kemampuan representasi matematis siswa tetapi tidak ada pengaruh yang signifikan terhadap minat matematika siswa. Untuk mendukung temuan tersebut, diperoleh beberapa kesimpulan yang merupakan jawaban atas pertanyaan penelitian pada rumusan masalah seperti berikut ini: (1) Representasi matematis siswa yang diberi model pembelajaran berbasis masalah secara signifikan lebih baik daripada siswa yang diberi model pembelajaran biasa, (2) Minat matematis siswa yang diberi model pembelajaran berbasis masalah secara signifikan tidak lebih baik daripada siswa yang diberi model pembelajaran biasa. (3) Tidak terdapat interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa. (4) Proses penyelesaian jawaban siswa pada model pembelajaran berbasis masalah lebih baik dibandingkan dengan siswa pada model pembelajaran biasa. Siswa dengan model pembelajaran berbasis masalah menjawab dengan lebih sistematis dan mampu memberikan alasan dan perhitungan yang tepat, sedangkan siswa dengan model pembelajaran biasa menjawab dengan kurang sistematis dan tidak memberi alasan serta perhitungan yang baik. i ABSTRACT RANI SARI IRWANITA DAMANIK. The Influence of Problem Based Learning to SMK Negeri 11 Medan Student’s Ability of Mathematical Representation and Interest. Thesis. Medan. 2013. Department Mathematics, Master of Degree Program, State University of Medan. Key words: Problem Based Learning, Mathematical Representation, Interest The aim of this research are: (1) Knowing the ability of students to obtain mathematical representation of problem based learning approach is better than mathematical representation of students receiving regular learning. (2) Knowing the students’ interest in learning mathematics problem based learning is better than learning interest of students receiving regular learning. (3) Knowing the interaction between the learning with interest to ability of mathematical representation. (4) to find out howthe process of resolving the problem of representation of mathematics students in problem solving. This is semi experimental research in SMK Negeri 11 Medan. The group of the experiment sample and the control group are chosen by random. There are two classes are taken randomly at school. The experiment class gets Problem Based Learning and the control class gets Regular Learning. The instrument is the mathematical representation and interest. The data is analyzed by using Kolmogorov-Smirnov test to see the influence of students’ ability interest and mathematic representation through Problem Based Learning, and ANOVA sees the the interaction the learning model is used. The result shows that: (1) mathematical representationof students who were given a problem based learning model is significantly better than student who were given regular learning model. (2) mathematical interest students are given a problem based learning model was notsignificantly better than students who were given regular learning model. (3) ANOVA Analisis showed that There was no interaction between the learning model used in improvng student’s mathematical representation ability and interest.(4) the process of settlement of the students’ answers to a problem based learning modelbetter than students in regular learning model. Students with a problem based learning model to answer with more systematic and able to provide the proper reason and calculation, whereas students withexceptional learning model answer with less systematic and does not give a good reason and calculation. ii KATA PENGANTAR Puji Syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan karuniaNya, sehingga Tesis yang berjudul “Pengaruh Pembelajaran Berbasis Masalah terhadap Kemampuan Representasi dan Minat Belajar Matematika Siswa SMK Negeri 11 Medan” ini dapat diselesaikan. Penyusunan tesis ini dilakukan dalam rangka memenuhi salah satu syarat untuk memperoleh gelar Magister Pendidikan pada Program Studi Pendidikan Matematika Sekolah Pasca Sarjana UNIMED. Pada tesis ini ditelaah penggunaan model model pembelajaran berbasis masalah untuk melihat pengaruh model pembelajaran tersebut terhadap kemampuan representasi dan minat belajar matematika siswa SMK Negeri 11 Medan. Subyek penelitian yang diambil adalah siswa kelas XI SMK Negeri 11 Medan. Penelitian yang dilakukan dilatarbelakangi oleh suatu upaya untuk mendukung ketercapaian kompetensi yang dikembangkan pada mata pelajaran matematika dalam kurikulum KTSP. Selain itu kondisi pembelajaran matematika di sekolah secara umum kurang melibatkan siswa baik secara mental, fisik, maupun sosial. Berdasarkan hasil penelitian yang diperoleh siswa, ternyata pembelajaran yang dilakukan lebih efektif bila dibandingkan dengan pembelajaran biasa. Pada kesempatan ini, penulis mengucapan terimakasih yang sebesarbesarnya kepada: iii 1) Bapak Dr. Hasratuddin, M.Pd. selaku Pembimbing I dalam penyusunan tesis ini, yang dengan penuh ketelitian, kesabaran, kesediaannya menerima keluh kesah penulis, dan pengertian yang luar biasa dalam membimbing penulis di sela-sela kesibukannya. 2) Bapak Prof. Dr. Harun Sitompul, M.Pd. selaku pembimbing II dalam penulisan tesis ini, yang dengan kesabaran dan pengertiannya dalam membimbing penulis. 3) Bapak Dr. Edi Syahputra, M.Pd, selaku Ketua Program Studi Pendidikan Matematika Program Pasca Sarjana UNIMED yang telah banyak membantu kelancaran penelitian ini. 4) Bapak Ibu dosen pengasuh matakuliah pada Program Studi Pendidikan Matematika Pasca Sarjana UNIMED, yang telah mengajar dan membimbing penulis selama menuntut ilmu. 5) Kepala SMK Negeri 11 Medan yang telah memberikan kesempatan dan bantuan sehingga penulis dapat melakukan penelitian. 6) Bapakku tercinta; Jabat Damanik, S.Pd, Ibuku tercinta; Nina Ariati Saragih, serta adik-adikku; Noverini Estetika Damanik, SKM dan Adi Syahputra Damanik; atas sumbang sarannya sehingga penulis dapat melanjutkan studi dan dorongan baik moril maupun materil yang telah mereka berikan, serta doa yang tulus bagi keberhasilanku. 7) Suamiku; Haposan Rajagukguk, S.Si: atas segala pengorbanan baik moril maupun materil yang telah diberikan terutama kesediaan untuk terpisah iv selama penulis menuntut ilmu, juga kesabaran dan doa yang senantiasa dipanjatkan untuk keberhasilanku. 8) Ibu Mertuaku serta adik iparku yang juga turut mendukungku dalam melanjutkan studi ini. 9) Teman-teman program studi pendidikan matematika UNIMED angkatan tahun 2010 Pak Arianto, Bang Candra, Kak Endang, Fitri, Bang Heri, Bang James, Pak Kafrawi, Lola, Bang Marthin, Pak Mul, Kak Nora, Bang Purba, Kak Ragusta, Ros, Sri, Suci, Aini, Pak Ir, dan Yunita yang telah memberikan kenangan baik suka maupun duka di Pasca Sarjana Unimed. Dengan segala kekurangan dan keterbatasan, penulis berharap semoga tesis ini dapat memberikan sumbangan dan manfaat bagi para pembaca, sehingga dapat memperkaya khasanah penelitian-penelitian sebelumnya, dan dapat memberi inspirasi untuk penelitian lebih lanjut. Medan, Agustus 20143 Penulis, Rani Sari Irwanita Damanik v DAFTAR ISI Halaman ABSTRAK .................................................................................................. i ABSTRACT ................................................................................................ ii KATA PENGANTAR ................................................................................ iii DAFTAR ISI ................................................................................................ vi DAFTAR TABEL ...................................................................................... xi DAFTAR GAMBAR .................................................................................. xiii DAFTAR LAMPIRAN .............................................................................. xiv BAB I PENDAHULUAN 1.1. Latar Belakang Masalah ............................................................. 1 1.2. Identifikasi masalah .................................................................... 15 1.3. Batasan Masalah ......................................................................... 16 1.4. Rumusan Masalah ...................................................................... 17 1.5. Tujuan Penelitian ....................................................................... 17 1.6. Manfaat Penelitian ..................................................................... 18 1.7 Definisi Operasional ……………………………………………. 19 BAB II KAJIAN PUSTAKA 2.1. Kerangka teoretis........................................................................ 21 2.1.1. Hakikat Belajar Matematika ............................................ 21 2.1.2. Kemampuan Representasi Matematik ............................. 23 2.1.3. Pembelajaran Berbasis Masalah ...................................... 32 2.1.4. Pembelajaran Biasa ......................................................... 39 2.1.5. Minat Belajar Matematika ............................................... 41 2.2. Teori Belajar yang melandasi Pembelajaran Berbasis Masalah ..................................................................................... 49 2.3. Penelitian yang Relevan ............................................................ 53 vi 2.4. Kerangka Konseptual ................................................................ 55 2.4.1 Perbedaan kemempuan representasi matematik Siswa yang memperoleh model pembelajaran berbasis masalah lebih baik daripada kemampuan representasi matematik siswa yang memperoleh pembelajaran biasa ................................................... ......... 57 2.4.2 Perbedaan minat belajar siswa terhadap matematika yang memperoleh model pembelajaran berbasis masalah lebih baik daripada minat belajar siswa terhadap matematika yang memperole pembelajaran biasa................................. 59 2.4.3 Terdapat interaksi antara pembelajaran dengan kemampuan Representasi dan minat belajar matematika siswa ............. 61 2.5. Hipotesis penelitian ................................................................... 64 BAB III METODE PENELITIAN 3.1. Rancangan Penelitian ................................................................ 65 3.2. Tempat dan waktu Penelitian .................................................... 66 3.3. Populasi dan Sampel Penelitian ................................................ 66 3.4. Variabel Penelitian .................................................................... 67 3.5. Prosedur Penelitian .................................................................... 68 3.5.1 Tahap Persiapan Penelitian.......................................... 70 3.5.2 Tahap Pelaksanaan Kegiatan Penelitian......................... 70 3.5.3 Tahap Analisis Data dan Penulisan Laporan Hasil Penelitian........................................................ 70 3.6. Instrumen Penelitian .................................................................. 71 3.6.1. Tes Kemampuan Representasi Matematik ...................... 71 3.6.2. Angket Skala Minat Siswa .............................................. 73 3.6.3. Analisis Validitas Tes ...................................................... 74 3.6.3.1 Uji Coba Instrumen ………………………………. 74 3.6.4. Reliabilitas Tes …………………………………………. 79 vii 3.6.5. Daya Pembeda Butir Soal ………………………………. 80 3.6.6. Tingkat Kesukaran Butir Soal ………………………….. 81 3.7. Pengontrolan Perlakuan ............................................................. 82 3.7.1. Validitas Internal ……………………………………….. 82 3.7.2. Validitas Eksternal ……………………………………… 83 3.8. Teknik Analisis Data ................................................................. 83 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Hasil Penelitian Kemampuan representasi Matematis ............... 87 4.1.1. Deskripsi Kemampuan Representasi ............................... 88 4.1.2. Uji Normalitas Data Kemampuan Representasi .............. 91 4.1.2.1. Uji Normalitas Data Pretes ………………….. 91 4.1.2.2. Uji Normalitas Data Postes ………...……….. 92 4.1.3. Uji Normalitas Data Kemampuan Representasi ............ 92 4.2. Hasil Penelitian Skala Minat Matematis ................................... 95 4.2.1. Uji Normalitas Minat Matematis ..................................... 96 4.2.2. Uji Homogenitas Minat Matematis .................................. 97 4.3. Pengujian Hipotesis ..................................................................... 97 4.3.1. Hipotesis Pertama ……………………………………... . 97 4.3.2. Hipotesis Kedua ……………………………………... ... 99 4.3.3. Hipotesis Ketiga ……………………………………... ... 101 4.3.4. Analisis Keragaman Proses Penyelesaian Jawaban Siswa Tes Kemampuan Representasi Matematika …….. . 104 4.4. Pembahasan hasil Penelitian ....................................................... 111 4.4.1. Faktor Pembelajaran ......................................................... 111 4.4.2. Kemampuan Representasi Matematis .............................. 117 4.4.3. Minat Matematis ............................................................... 119 4.4.4. Keterbatasan Penelitian .................................................... 120 viii BAB V SIMPULAN DAN SARAN 5.1. Simpulan ................................................................................... 122 5.2. Implikasi ……………………………………………………….. 122 5.3 Saran .......................................................................................... 125 DAFTAR PUSTAKA .................................................................................. 120 LAMPIRAN ix DAFTAR TABEL Tabel Halaman 2.1. Bentuk-bentuk indikator representasi matematika .............................................................................. 31 2.2. Sintaks Pembelajaran Berbasis Masalah………......................... 39 3.1. Rancangan Penelitian ………………………........................... 65 3.2. Tabel Weiner tentang keterkaitan antara variabel bebas dan 96 terikat ....................................................................................... 66 3.3. Kisi-kisi tes kemampuan representasi matematik……............. 71 3.4. Kriteria skor kemampuan representasi matematik ................... 72 3.5. Kisi-kisi angket minat siswa ….……………………………..... 73 3.6. Rangkuman hasil validasi perangkat pembelajaran …………... 75 3.7. Hasil validasi tes kemampuan representasi matematis……..…. 76 3.8. Hasil Validasi angket minat matematika.................................... 77 3.9. Validitas butir soal kemampuan representasi matematis ........... 79 3.10. Hasil perhitungan koefisien reliabilitas tes kemampuan representasi matematis ……………..………………………….. 3.11. Hasil perhitungan daya pembeda tes kemampuan representasi matematis ……………………………………………………… 3.12. 84 Deskripsi kemampuan representasi matematis siswa tiap kelas sampel berdasarkan nilai pretes................................................ 4.2. 82 Keterkaitan permasalahan, hipotesis dan jenis uji statistik yang digunakan …………………………………………………… 4.1. 81 Hasil tingkat kesukaran butir tes kemampuan representasi matematis ……………………………………………………… 3.13. 80 Deskripsi kemampuan representasi matematis siswa tiap kelas 88 sampel berdasarkan nilai postes................................................ 89 4.3. Hasil uji normalitas pretest kemampuan representasi……....... 91 4.4. Hasil uji normalitas postest kemampuan representasi………... 92 4.5. Hasil uji homogenitas hasil pretes kemampuan representasi matematika kelas model PBM dan kelas model PB ................. 4.6. Hasil uji homogenitas hasil pretes kemampuan representasi matematika kelas model PBM dan kelas model PB................. 4.7. 95 Hasil uji homogenitas varians minat matematis kelas model PBM dan kelas model PB ......................................................... 4.9. 94 Hasil uji normalitas minat matematis kelas model PBM dan kelas model PB ......................................................... 4.8. 94 96 Rangkuman Anova dua jalur perhitungan kemampuan representasi matematis antara model pembelajaran ………..... 97 DAFTAR GAMBAR Gambar Halaman 1.1. Salah satu pola jawaban siswa SMK Negeri 11 Medan ......................... 7 1.2. Daerah penyelesaian pertidaksamaan pada bidang kartesius ................. 8 2.1. Interaksi timbale balik antara representasi internal dan eksternal .......... 28 3.1. Prosedur Penelitian ................................................................................. 69 4.3. Interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa ............................................................ 100 4.4. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 1…………………………………. 101 4.5. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 2…………………………………. 102 4.6. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 3…………………………………. 103 4.7. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 4…………………………………. 105 4.8. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 5…………………………………. 107 DAFTAR LAMPIRAN LAMPIRAN 1 Halaman 1. Rencana Pelaksanaan Pembelajaran Kelas Eksperimen 1 ............. 134 2. Rencana Pelaksanaan Pembelajaran Kelas Kontrol 1 .................... 151 3. Lembar Aktifitas Siswa .................................................................. 163 LAMPIRAN 2 1. Kisi-kisi tes kemampuan representasi matematika ...................... 187 2. Butir Soal Tes Kemampuan Representasi Matematika Siswa ..... 188 3. Rubrik Penilaian Kemampuan Representasi Matematika ........... 191 4. Kisi-kisi Lembar Angket Skala Minat ......................................... 194 5. Angket Skala Minat ..................................................................... 195 LAMPIRAN 3 1. Hasil Validasi Rencana Pelaksanaan Pembelajaran ..................... 197 2. Hasil Validasi Tes Kemampuan Representasi Matematika .......... 206 3. Hasil Validasi Pretes/ Postes Kemampuan Representasi ............... 210 4. Hasil Validasi Angket Minat Matematis ....................................... 248 LAMPIRAN 4 1. Deskripsi Hasil Pretes Kemampuan representasi Kelas eksperimen 221 2. Deskripsi Hasil Pretes Kemampuan Representasi Kelas Kontrol ........................................................................................ 3. Deskripsi Hasil Postes Kemampuan Representasi 222 kelas Eksperimen ................................................................................. 223 4. Deskripsi Hasil Postes kemampuan Representasi Kelas Kontrol ........................................................................................ 224 5. Deskripsi Hasil Minat kelas Eksperimen ................................... 225 6. Deskripsi Hasil Minat kelas Kontrol .......................................... 226 7. Hasil uji Normalitas Pretes Kelas Eksperimen dan Kontrol ...... 227 8. Hasil Uji Normalitas Postes Kelas Eksperimen dan Kontrol ...... 227 9. Hasil Uji Homogrnitas Postes Kelas Eksperimen dan Kontrol... 227 vi 10. Hasil Uji Normalitas Minat Kelas Eksperimen dan Kontrol ...... 228 11. Hasil Uji Homogrnitas Minat Kelas Eksperimen dan Kontrol. .. 228 12. Rangkuman Hasil Anava secara keseluruhan terhadap kemampuan Representasi Matematika Siswa ......................... 229 LAMPIRAN 5 1. Jadwal Penelitian Kelas Eksperimen SMK Negeri 11 Medan .... 230 2. Jadwal Penelitian Kelas Kontrol SMK Negeri 11 Medan .......... 230 LAMPIRAN 6 1. Foto Penelitian di SMK Negeri 11 Medan ................................. 231 LAMPIRAN 7 1. Surat Penelitian dari Pasca Sarjana UNIMED 2. Surat telah melakkukan Penelitian di SMK Negeri 11 Medan 3. Surat Keputusan (SK) Pembimbing 4. Surat tidak melakukan Plagiat 5. Surat keterangan lulus TOEFL vii 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kekayaan sumber daya alam yang melimpah pada suatu negara belum tentu merupakan jaminan bahwa negara tersebut akan makmur, jika pendidikan sumber daya manusianya terabaikan. Suatu Negara yang memiliki sumber daya alam yang banyak jika tidak ditangani oleh manusia yang berkualitas maka pada suatu saat akan mengalami kekecewaan. Upaya untuk meningkatkan sumber daya manusia merupakan tugas besar dan memerlukan waktu yang panjang. Meningkatkan sumber daya manusia tidak lain harus melalui proses pendidikan yang baik dan terarah. Masa depan suatu negara sangat ditentukan oleh bagaimana Negara tersebut memperlakukan pendidikan. Dalam menghadapi era globalisasi yang penuh tantangan, pendidikan merupakan aspek yang sangat penting karena diharapkan mampu membentuk sumber daya manusia yang terampil, kreatif dan inovatif. Pendidikan menekankan pada proses belajar yang bertujuan untuk mengembangkan seluruh potensi yang ada pada diri manusia baik aspek kognitif, afektif maupun psikomotorik. Pendidikan formal yang dilakukan di sekolah-sekolah sampai sekarang tetap merupakan lembaga pendidikan utama yang merupakan pusat pengembangan sumber daya manusia dengan didukung oleh pendidikan dalam keluarga dan masyarakat. Matematika sebagai salah satu sarana berfikir ilmiah sangat diperlukan untuk menumbuhkembangkan kemampuan berfikir logis, sistematis dan kritis 2 dalam diri peserta didik. Demikian pula matematika merupakan pengetahuan dasar yang diperlukan oleh peserta didik untuk menunjang keberhasilan belajarnya dalam menempuh pendidikan yang lebih tinggi. Bahkan matematika diperlukan oleh semua orang dalam kehidupan sehari-hari. Karena itulah peserta didik perlu memiliki pengetahuan matematika yang cukup untuk menghadapi masa depan. Menurut Sidi ( dalam Mudjakkir, 2006) matematika dapat dipandang sebagai ilmu dasar yang strategis dan berfungsi untuk 1) menata dan meningkatkan ketajaman penalaran siswa sehingga dapat memperjelas penyelesaian masalah dalam kehidupan sehari-hari; 2) melatih kemampuan berkomunikasi dengan menggunakan bilangan dan simbol-simbol; 3) melatih siswa untuk selalu berorientasi pada kebenaran dengan mengembangkan sikap logis, kritis, kreatif, objektif, rasional, cermat, disiplin dan mampu bekerja sama secara efektif; dan 4) melatih siswa untuk berfikir secara teratur, sistematis, dan terstruktur dalam konsepsi yang jelas. Tujuan pembelajaran matematika yang tertuang dalam permendiknas No. 22 (Depdiknas, 2006) tentang Standar Isi Mata Pelajaran Matematika yaitu: 1) memahami konsep matematika, menjelaskan keterkaitan antar konsep dan mengaplikasikan konsep atau algoritma secara luwes, akurat, efesien dan tepat dalam pemecahan masalah. 2) menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti, atau menjelaskan gagasan dan pernyataan matematika. 3) memecahkan masalah yang meliputi kemampuan memahami masalah, meracang model matematika, menyelesaikan model dan menafsirkan solusi yang diperoleh. 4) 3 mengkomunikasikan gagasan dengan simbol, tabel, diagram atau media lain untuk memperjelas keadaan atau masalah. 5 memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah. Standar matematika di sekolah menurut CIAI (Curriculum Instruction Assessment Improvement) Pinellas County Schools meliputi standar isi atau materi (mathematical content), mathematical abilities dan standar proses (mathematical processes). Standar proses meliputi pemecahan masalah (problem solving), penalaran (reasoning) komunikasi (comunication), koneksi (connections), dan representasi (representation). NCTM menyataka bahwa baik standar materi maupun standar proses tersebut bersama-sama merupakan keterampilan dan pemahaman dasar yang sangat dibutuhkan para siswa pada abad ke-21 ini (Together, the standards describe the basic skills and understanding that students will need to function effectively in the twenty-first century). Tujuan pembelajaran matematika menurut NCTM meliputi kemampuan pemecahan masalah (problem solving), kemampuan berkomunikasi (communication), kemampuan berargumentasi (reasoning), kemampuan membuat koneksi (connection). Dari uraian di atas terlihat bahwa kemampuan komunikasi matematika merupakan bagian dari kemampuan yang diharapkan pada pembelajaran matematika. Kemampuan komunikasi sangat perlu dihadirkan secara intensif agar siswa terlibat aktif dalam pembelajaran dan hilangnya kesan bahwa matematika merupakan pelajaran yang asing dan menakutkan. Kemampuan komunikasi 4 matematik juga sangat penting karena matematika pada dasarnya adalah bahasa yang sarat dengan notasi dan istilah sehingga konsep yang terbentuk dapat dipahami dan dimanipulasi oleh siswa. Menurut Baroody seperti dikutip Mudjakkir (2006) matematika bukan hanya sekedar alat bantu berfikir, menemukan pola, menyelesaikan masalah, atau menggambarkan kesimpulan, tetapi juga sebagai suatu bahasa atau alat yang tak terhingga nilainya untuk mengkomunikasikan berbagai macam ide secara jelas, tepat, dan ringkas. Bahkan Lindquist dan Elliott (1996) menuturkan bahwa jika disepakati matematika itu merupakan suatu bahasa dan bahasa tersebut sebagai bahasa terbaik dalam komunitasnya. Untuk itu Pugalee (dalam Putri, 2001) menyebutkan bahwa jika siswa diberi kesempatan berkomunikasi tentang matematika, maka siswa akan berupaya meningkatkan ketrampilan dan proses fikirnya yang krusial dalam pengembangan kemahiran menulis dan membaca matematika atau melek matematik. Dengan demikian, mudah difahami bahwa komunikasi merupakan salah satu esensi dari pengajaran, pembelajaran, dan pelaksanaan asesmen matematika. Untuk menjadikan matematika sebagai alat komunikasi seperti paparan di atas, NCTM (1989) telah menggariskan secara rinci ketrampilan-ketrampilan kunci komunikasi matematik yang dapat dilakukan di dalam kelas dan harus dipandang sebagai bagian integral dari kurikulum matematika. Ketrampilanketrampilan kunci komunikasi matematik tersebut adalah membuat representasi, berbicara atau berdiskusi, menyimak atau mendengar, menulis, dan membaca. Tetapi kenyataan di lapangan menunjukkan bahwa keterampilanketerampilan kunci komunikasi matematik tersebut belum dilatihkan secara 5 maksimal. Seringkali siswa tidak terbiasa melibatkan diri secara aktif dalam pembelajaran. Bahkan siswa terkesan ingin disuapi atau dituangi, dan jika ada pertanyaan atau soal siswa lebih suka diberitahu jawabannya (Sa’dijah, 2002). Hal ini dapat terjadi jika siswa tidak menguasai konsep dasar (pengetahuan prasyarat) dan cara pandang siswa kurang positif terhadap pelajaran matematika. Misalnya, siswa menganggap matematika tidak bisa dipelajari sendiri sehingga siswa selalu menunggu bantuan guru; matematika dianggap sulit dan menakutkan karena terlalu banyak rumus; atau materi matematika tidak biasa didiskusikan. Akibatnya, siswa tidak memahami materi pelajaran secara mendalam yang membuka peluang siswa tidak menyenangi mata pelajaran matematika. Kemampuan representasi merupakan salah satu komponen penting dan fundamental untuk mengembangkan kemampuan berpikir siswa, karena pada proses pembelajaran matematika kita perlu mengaitkan materi yang sedang dipelajari serta merepresentasikan ide/gagasan dalam berbagai macam cara. Sumarmo (2005) juga berpendapat bahwa penyajian representasi dalam pembelajaran matematika semakin penting. Para pakar pembelajaran matematika yang tergabung dalam NCTM menetapkan representasi matematika sebagai suatu standar kemampuan tersendiri yang harus dikembangkan dalam pelaksanaan kurikulum matematika di sekolah. Menurut Jones (dalam Hudiono, 2005), terdapat beberapa alasan perlunya representasi, yaitu: memberi kelancaran siswa dalam membangun suatu konsep dan berpikir matematik serta untuk memiliki kemampuan dan pemahaman konsep yang kuat dan fleksibel yang dibangun oleh guru melalui representasi matematik. Penggunaan representasi oleh siswa dapat menjadikan gagasan-gagasan 6 matematik lebih konkrit dan membantu siswa untuk memecahkan suatu masalah yang dianggap rumit dan kompleks menjadi lebih sederhana jika strategi dan pemanfaatan representasi matematika yang digunakan sesuai dengan permasalahan. Selanjutnya, Sumarmo (dalam Mudzakkir, 2006) mereview beberapa artikel tentang representasi (Goldin, 2002. Downs dan Downs, 2002. Kaput dalam Swafford dan Langrall, 2000, NCTM, 1989, dan Mc.Coy, Baker, dan Little, 1996). Dalam artikel-artikel di atas, representasi dapat diartikan sebagai : (1) konfigurasi atau gambaran suatu bentuk matematika dalam beberapa cara yang berbeda (Goldin, 2002), (2) konstruksi matematik yang menggambarkan konstruksi matematik lainnya (Downs dan Downs, 2002), (3) gambaran hubungan-hubungan atau operasi-operasi dari suatu situasi atau masalah matematik (Kaput, dalam Swafford dan Langrall, 2000), (4) penggambaran atau pengungkapan kembali suatu ide atau masalah matematik ke dalam bentuk baru (NCTM, 1989). Pemahaman matematika melalui representasi adalah dengan mendorong siswa menemukan dan membuat suatu representasi sebagai alat atau cara berpikir dalam mengkomunikasikan gagasan matematika dari abstrak menuju konkrit. Representasi matematik melibatkan cara yang digunakan siswa untuk mengkomunikasikan bagaimana mereka menentukan jawabannya sebagaimana yang diungkapkan Jakabcsin dan Lane (dalam Yuniawatika, 2001). Komunikasi dalam matematika memerlukan representasi yang dapat berupa: simbol tertulis, diagram, tabel ataupun benda karena matematika yang bersifat abstrak membutuhkan sajian-sajian benda konkrit untuk memudahkan siswa memahami konsep yang dipelajarinya, Hudiono (dalam Yuniawatika, 2001). 7 Begitu penting kemampuan representasi matematis dalam proses pembelajaran, namun kenyataannya kemampuan representasi matematis siswa SMK masih rendah. Sebagaimana tercermin pada observasi awal yang penulis lakukan di SMK Negeri 11 Medan. Adapun soal tes yang diberikan adalah: “Seorang pedagang buah membeli apel dan jeruk dengan menggunakan sepeda motor. Harga apel Rp 8.000/kg dan harga jeruk Rp 4.000/kg. Ia merencanakan tidak akan mengeluarkan uang lebih dari Rp 200.000 dan ia hanya dapat membawa tidak lebih dari 40 kg. Bila apel dan jeruk yang ia beli berturut-turut x kg dan y kg. Sedangkan laba yang ia peroleh sebesar Rp 2.500/kg apel dan Rp 1.200/kg jeruk, berapa berat apel dan jeruk yang harus dibeli agar memperoleh laba yang sebesar-besarnya? Hitunglah laba maksimum tersebut! ” Adapun jawaban yang dituliskan oleh salah satu siswa dapat dilihat pada Gambar 1.1 sebagai berikut: Gambar 1.1 Salah satu pola jawaban siswa SMK Negeri 11 Medan Dari hasil jawaban siswa tersebut terlihat bahwa siswa belum mampu menerjemahkan persoalan tersebut ke bentuk model matematika, membuat tabel 8 yang benar dan menentukan himpunan penyelesaian pada bidang kartesius. Salah satu alternatif jawaban untuk soal tersebut adalah: Misalkan x = apel y = jeruk model matematikanya: + 40 8.000 + 4.000 200.000 ↔ 2 + 50 0, 0 Bentuk objektif: Keuntungan maksimal: 2.500x + 1.200y Untuk menentukan daerah penyelesaian system pertidaksamaan di atas dilakukan sebagai berikut: Misalkan: x + y = 40 ……… (1) 2x + y = 50 ………. (2) Untuk pers (1) diperoleh titik koordinatnya (40,0) dan (0,40), sedangkan untuk pers (2) diperoleh titik koordinatnya (25,0) dan (0,50), dan perpotongan kedua persamaan tersebut diperoleh (10,30). Daerah penyelesaian pertidaksamaan dapat di lihat pada Gambar 1.2 berikut : y 50 40 (10,30) 0 x 25 40 Gambar 1.2 Daerah penyelesaian pertidaksamaan pada bidang kartesius Untuk melihat keuntungan maksimal dapat dilihat pada table berikut ini: Titik pojok (0,40) (10,30) (0,50) Fungsi objektif (2.500x + 1.200y) 0 + 1.200 (40) 2.500 (10) + 1.200 (30) 0 +1.200 (50) Nilai (Rp) 48.000 61.000 60.000 Banyaknya masing-masing buah yang harus dibeli agar keuntungan maksimum yaitu 10 kg apel dan 30 kg jeruk dengan keuntungan maksimum Rp 61.000 9 Penyelesaian soal di atas dapat diselesaikan dengan baik jika siswa mampu menuliskan informasi yang ada dalam soal dengan benar, mengubah soal cerita ke dalam bentuk variabel atau simbol matematika agar mempermudah perhitungan, dan mampu menggambarkan himpunan penyelesaian pada diagram kartesius. Sehingga tampak jelas kemampuan representasi matematika siswa masih rendah Gambaran di lapangan ini sesuai dengan laporan hasil TIMSS (dalam Mullis, et.al, 2001) yang menunjukkan kemampuan siswa dalam merepresentasikan ide atau konsep matematik dalam materi pembagian dan bilangan; aljabar; geometri; serta representasi data, analisis, dan peluang termasuk rendah. Hal ini dapat diasumsikan bahwa siswa SMP di Indonesia memiliki representasi matematika siswa yang rendah. Sebagai contohnya, ketika siswa diminta membuat persamaan dari tabel yang merepresentasikan hubungan antara dua variabel, kemampuan representasi siswa Indonesia adalah 27%. Sedangkan kemampuan representasi rata-rata internasional 45%. Dengan demikian terdapat perbedaan kemampuan representasi sebesar 18%. Manfaat lain dari representasi dalam pembelajaran adalah sebagai alat konseptual bagi siswa. Contoh berikut merupakan kasus yang ditemukan oleh Mudzakkir (2006) berkaitan dengan kebiasaan siswa yang berinteraksi dengan representasi grafik atau tabel nilai-nilai fungsi secara aljabar (process-oriented) dan memandang grafik atau tabel nilai-nilai fungsi tersebut hanya sebagai rangkaian pasangan titik atau nilai-nilai yang berlainan (discrete). Misalnya, diberikan persamaam y = 4 - 2x dan y = 3x – 1. Siswa diminta untuk : a. Menentukan himpunan penyelesaian persamaan linear tersebut. 10 b. Menggambar grafik kedua persamaan tersebut. Apakah titik potongnya sama dengan jawaban (a)? c. Membuat sebuah representasi yang sesuai dengan persamaanpersamaan itu. Dalam proses penyelesaiannya, sebagian siswa hanya mampu menjawab sampai a. untuk soal b, siswa kebingungan untuk menggambarkannya dalam bentuk grafik, sedangkan untuk soal c, siswa sama sekali tidak mengetahui dan mengerti bagaimana menjadikannya kedalam bentuk representasi. Dalam kata lain siswa tidak mengetahui makna yang terkandung dalam soal tersebut. Dari sini diperoleh bahwa siswa memiliki kemampuan representasi yang masih rendah. Even dan Tirosh (dalam Hasanah, 2004) mengemukakan hasil kajian yang berkaitan dengan representasi siswa bahwa seringkali siswa-siswa memberikan respon yang berbeda terhadap masalah matematika yang sesungguhnya sama, tetapi melibatkan representasi-representasi yang berbeda-beda. Sehingga dapat dikatakan bahwa representasi-representasi akan muncul dengan jelas dalam kuantitas yang memadai dan relevan dengan kemampuan siswa apabila pembelajaran dilakukan dengan pendekatan-pendekatan yang memungkinkan representasi-representasi dapat terjadi. Pengetahuan yang dipandang sebagai satu di antara pendekatan yang dapat membuat siswa aktif dalam mengkonstruksi pengetahuan mereka adalah pendekatan pembelajaran berbasis masalah. Dari pengamatan yang terjadi pada proses pembelajaran di dalam kelas, pembelajaran matematika yang dilakukan oleh guru kurang bermakna, hal ini dapat dilihat dari pembelajaran matematika cenderung ditujukan pada pencapaian target materi yang sesuai pada buku yang digunakan sebagai buku wajib dengan 11 berorientasi pada soal-soal Ujian Nasional (UN). Guru dalam pembelajarannya di kelas tidak mengaitkan dengan skema yang telah dimiliki oleh siswa dan siswa kurang diberikan kesempatan untuk menemukan kembali dan mengkonstruksi sendiri ide-ide matematika. Anak yang belajar matematika terpisah dari pengalaman mereka sehari-hari maka anak akan cepat lupa dan tidak dapat mengaplikasikan matematika. Berdasarkan pendapat tersebut, pembelajaran matematika di kelas ditekankan pada keterkaitan antara konsep-konsep matematika dengan pengalaman anak sehari-hari. Selain itu, perlu menerapkan kembali konsep matematika yang telah dimiliki anak pada kehidupan sehari-hari atau pada bidang lain sangat penting dilakukan. Sudarman (2005) menjelaskan bahwa salah satu masalah yang dihadapi dunia pendidikan kita adalah masalah lemahnya proses pembelajaran. Dalam proses pembelajaran, siswa kurang didorong untuk mengembangkan kemampuan berpikir. Proses pembelajaran di kelas diarahkan kepada kemampuan anak untuk menghafal informasi. Otak anak dipaksa untuk mengingat dan menimbun berbagai informasi tanpa dituntut memahami informasi yang diingatnya itu untuk menghubungkan dengan kehidupan sehari-hari. Akibatnya, ketika anak didik lulus dari sekolah, mereka pintar teoretis tetapi mereka miskin aplikasi. Pendidikan di sekolah terlalu menjejali otak anak dengan berbagai bahan ajar yang harus dihafal. Pendidikan tidak diarahkan untuk mengembangkan dan membangun karakter serta potensi yang dimiliki. Dengan kata lain, proses pendidikan kita tidak diarahkan membentuk manusia cerdas, memiliki kemampuan memecahkan masalah hidup, serta tidak diarahkan untuk membentuk manusia kreatif dan inovatif. 12 Berkaitan dengan hal tersebut di atas, salah satu cara untuk dapat menciptakan sumber daya manusia berkualitas, guru dalam mengajar dapat menggunakan beberapa metode dan pendekatan. Dalam hal ini, pendekatan yang dianggap sesuai dengan perkembangan Ilmu Matematika adalah pendekatan pembelajaran berbasis masalah atau problem based learning (PBL), karena dalam belajar berdasarkan masalah, pembelajaran didesain dalam bentuk pembelajaran yang diawali dengan struktur masalah real yang berkaitan dengan konsep-konsep matematika yang akan dibelajarkan. Pembelajaran dimulai setelah siswa disuguhkan dengan struktur masalah real, dengan cara ini siswa mengetahui mengapa mereka belajar. Semua informasi akan mereka kumpulkan melalui penelaahan materi ajar, kerja praktik lab ataupun melalui diskusi dengan teman sebayanya, untuk dapat digunakan memecahkan masalah yang dihadapinya. Tujuan dari pembelajaran berbasis masalah (problem-based learning) menurut Sugandi (2009) adalah terlibat dalam suatu tantangan (masalah, tugas rumit, situasi) dengan inisiatif dan antusias, bernalar dengan efektif akurat dan kreatif dengan basis yang terintegrasi, fleksibel, dengan pengetahuan yang sudah ada. Dengan menggunakan pendekatan PBL dalam pembelajaran matematika, siswa tidak hanya sekadar menerima informasi dari guru saja, karena dalam hal ini guru sebagai motivator dan fasilitator yang mengarahkan siswa agar dapat terlibat secara aktif dalam seluruh proses pembelajaran dengan diawali pada masalah yang berkaitan dengan konsep yang dibelajarkan. Dengan demikian karakteristik PBL lebih mengacu kepada aliran pendidikan konstruktivisme, dimana belajar merupakan proses aktif dari siswa untuk membangun pengetahuannya. Proses aktif yang dimaksud tidak hanya 13 bersifat secara mental tetapi juga keaktifan secara fisik. Artinya, melalui aktivitas secara fisik pengetahuan siswa secara aktif dibangun berdasarkan proses asimilasi pengalaman atau bahan yang dipelajari dengan pengetahuan (skemata) yang telah dimiliki siswa dan ini berlangsung secara mental, Matthews (dalam Suparno, 1997). Namun, fakta di lapangan menunjukkan bahwa pembelajaran matematika masih dianggap sebagai pelajaran yang membosankan bagi siswa. Ketidaktahuan siswa mengenai kegunaan matematika dalam praktek sehari-hari menjadi penyebab mereka lekas bosan dan tidak tertarik pada pelajaran matematika, di samping pengajar matematika yang mengajar secara monoton, metode pembelajaran yang kurang variasi dan hanya berpegang teguh pada diktatdiktat atau buku-buku paket saja. Akibatnya banyak yang kelihatan tidak bergairah, tidak memperhatikan pelajaran dengan serius, ada pula yang kelihatan mengantuk disaat jam pelajaran dimulai. Hal ini berdampak pada prestasi belajar siswa yang rendah. Selain model pembelajaran yang digunakan dalam proses belajar mengajar, terdapat faktor lain yang mempengaruhi prestasi belajar matematika siswa. Salah satu faktor lain tersebut adalah minat belajar siswa. Karakteristik matematika yang abstrak dan sistematis menjadi salah satu alasan sulitnya siswa mempelajari matematika serta menjadi kurang berminat dalam mempelajarinya. Firngadi seperti dikutip Astuti dkk (2010) menambahkan bahwa matematika merupakan salah satu pelajaran yang menurunkan semangat siswa. Matematika telah diberi label negatif dikalangan siswa, yaitu dengan pelajaran yang sulit, menakutkan, dan membosankan, sehingga menimbulkan minat yang rendah untuk belajar. 14 Ketertarikan dan rasa senang siswa dalam mempelajari matematika, yang sering disebut dengan minat belajar siswa dibutuhkan untuk mengurangi pandangan negatif siswa pada pelajaran matematika. Minat belajar matematika merupakan faktor penting untuk memperoleh prestasi belajar matematika siswa yang maksimal. Anastasia dan Urbina seperti dikutip Astuti dkk (2010) menyatakan bahwa minat mempengaruhi perilaku manusia di antaranya dalam hubungan interpersonal, prestasi pendidikan dan pekerjaan, serta pemilihan aktivitas di waktu senggang. Dalyono seperti dikutip Astuti (2010) mengemukakan bahwa minat belajar yang besar cenderung menghasilkan prestasi yang tinggi, sebaliknya minat belajar yang kurang akan menghasilkan prestasi yang rendah. Hasil penelitian Carmichael (dalam Astuti, 2010) menyatakan bahwa minat siswa dalam belajar matematika dipengaruhi oleh pengetahuan siswa tentang matematika, perasaan nyaman siswa terhadap matematika, dan persepsi siswa terhadap metode yang digunakan guru dalam mengajar matematika. Laporan hasil seminar dan lokakarya pembelajaran matematika yang dilakukan pada tahun 2007 menyatakan bahwa rendahnya minat siswa dalam mempelajari matematika karena materi yang diajarkan kurang kontekstual, sedikit atau sama sekali tidak ada penekanan matematika dalam konteks kehidupan sehari-hari, guru mengajarkan matematika dengan materi dan metode yang tidak menarik, dimana guru menerangkan atau sementara siswa mencatat. Survei awal yang dilakukan pada siswa SMK N.11 Medan yaitu pada tanggal 11 Juli 2011 di kelas X ketika mereka pertama kali masuk sekolah di sini. Beberapa siswa berfikir bawa tidak ada pelajaran matematika di sekolah ini dan 15 hanya belajar musik saja. Banyak dari mereka yang tidak tertarik dengan pelajaran matematika dan menganggap matematika itu pelajaran yang menyeramkan. Dari hasil pengamatan yang dilakukan pada siswa, rata-rata 20 dari 30 siswa tidak mengerjakan PR matematika. Pada saat proses belajar mengajar berlangsung, kebanyakan siswa tidak mengerjakan soal latihan yang diberikan oleh guru. Dari sini terlihat bahwa murid kurang berminat pada pelajaran matematika sehingga berakibat menurunnya prestasi belajar matematika siswa. Oleh sebab itu, guru perlu menumbuhkan minat belajar siswa untuk memperoleh peningkatan prestasi belajar yang optimal. Ketepatan pemilihan model pembelajaran dalam proses pembelajaran matematika dan minat belajar siswa sangat perlu diperhatikan agar diperoleh peningkatan prestasi belajar matematika. Berdasarkan latar belakang yang dikemukakan di atas, maka penulis tertarik untuk melakukan penelitian mengenai “Pengaruh Pembelajaran Berbasis Masalah Terhadap Kemampuan Representasi dan Minat Belajar Matematika Siswa SMK Negeri 11 Medan”. 1.2 Identifikasi Masalah Adapun identifikasi masalah dari penelitian ini sebagai berikut: 1. Rendahnya hasil belajar matematika siswa. 2. Kemampuan representasi matematika siswa sangat rendah. 3. Masih rendahnya pemahaman siswa terhadap konsep-konsep yang terdapat pada pelajaran matematika sehingga siswa kesulitan dalam belajar 16 matematika dan berakibat kemampuan representasi matematika siswa rendah. 4. Pembelajaran matematka kurang bermakna 5. Model belajar yang kurang bervariasi dan tidak sesuai mengakibatkan siswa merasa bosan. 6. Guru belum terbiasa menggunakan model pembelajaran berbasis masalah. 7. Penerapan pembelajaran konvensional atau biasa diduga kurang sesuai untuk meningkatkan kemampuan representasi matematika siswa. 8. Siswa yang memiliki minat belajar yang rendah cenderung memiliki kemampuan representasi matematika siswa yang rendah pula 1.3 Batasan Masalah Dalam kajian penelitian ini, dibatasi pada penggunaan model Pembelajaran Berbasis Masalah dan model pembelajaran biasa. Untuk minat siswa dibatasi pada minat tinggi dan minat rendah. Hasil belajar yang dilihat adalah representasi matematika siswa kelas XI SMK Negeri 11 Medan. Penelitian ini juga membandingkan pada ruang lingkup penelitian dan waktu penelitian. Berkaitan dengan itu penelitian ini dilakukan pada semester genap Tahun Pelajaran 2012 – 2013 pada materi program linear. 17 1.4 Rumusan Masalah Berdasarkan latar belakang masalah yang telah diuraikan, rumusan masalah dalam penelitian ini adalah apakah terdapat pengaruh pembelajaran berbasis masalah terhadap kemampuan representasi dan minat belajar matematika siswa SMK. Dari rumusan masalah di atas, maka dibagi atas pertanyaan penelitian: 1. Apakah kemampuan representasi matematik siswa yang memperoleh model pembelajaran berbasis masalah lebih baik daripada kemampuan representasi matematik siswa yang memperoleh pembelajaran biasa? 2. Apakah minat belajar siswa terhadap matematika yang memperoleh pembelajaran berbasis masalah lebih baik daripada minat belajar siswa yang memperoleh pembelajaran biasa? 3. Apakah terdapat interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa? 4. Bagaimana proses penyelesaian masalah representasi matematika siswa dalam menyelesaikan masalah? 1.5 Tujuan Penelitian Penelitian ini bertujuan untuk: 1. Untuk mengetahui kemampuan representasi matematik siswa yang memperoleh pendekatan pembelajaran berbasis masalah lebih baik daripada kemempuan representasi matematik siswa yang memperoleh pembelajaran biasa. 18 2. Untuk mengetahui minat belajar siswa terhadap matematika yang memperoleh pembelajaran berbasis masalah lebih baik daripada minat belajar siswa yang memperoleh pembelajaran biasa. 3. Untuk mengetahui interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa. 4. Untuk mengetahui proses penyelesaian masalah representasi matematika siswa dalam menyelesaikan masalah. 1.6 Manfaat Penelitian Hasil yang diperoleh dalam penelitian ini diharapkan dapat bermanfaat secara teoretis maupun praktis. Secara teoritis penelitian ini bermanfaat memperkaya dan menambah khazanah ilmu pengetahuan guna meningkatkan kualitas pembelajaran guna meningkatkan kualitas pembelajaran khususnya yang berkaitan dengan pembelajaran berbasis masalah serta hubungannya dengan representasi dan minat belajar matematika siswa, sebagai sumbangan pemikiran dan bahan acuan bagi guru, pengelola, pengembang, lembaga pendidikan dan peneliti selanjutnya yang ingin mengkaji secara lebih mendalam. Sedangkan manfaat praktis dari penelitian ini antara lain: 1) memberi masukan pada guru atau calon guru matematika dalam menentukan model pembelajaran yang sesuai dengan materi ajar, sebagai alternatif untuk member variasi dalam pembelajaran. 2) memberi gambaran bagi guru khususny

Dokumen baru

Tags

Dokumen yang terkait

Pengaruh Pembelajaran Berbasis VARK terhadap Kemampuan Representasi Matematis Siswa
1
14
227
Pengaruh Model Pembelajaran Berbasis Masalah Terhadap Kemampuan Representasi Matematis dan Belief Siswa
0
16
55
PENGEMBANGAN PERANGKAT PEMBELAJARAN BERBASIS PENDEKATAN PENDIDIKAN MATEMATIKA REALISTIK UNTUK MENINGKATKAN KEMAMPUAN REPRESENTASI MATEMATIS SISWA SMP NEGERI 11 MEDAN.
0
12
21
PENINGKATAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA MELALUI PENERAPAN PEMBELAJARAN BERBASIS MASALAH DI SMP NEGERI 4 MEDAN.
0
1
3
PENGARUH PEMBELAJARAN KONTEKSTUAL TERHADAP KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA DAN KEMANDIRIAN BELAJAR SISWA DI MTS MIFTAHUSSALAM MEDAN.
0
3
22
PENINGKATAN KEMAMPUAN BERPIKIR KREATIF DAN REPRESENTASI MATEMATIS SISWA SMK SWASTA PANCA BUDI 2 MEDAN MELALUI PEMBELAJARAN BERBASIS MASALAH.
0
5
48
PENGARUH KEMAMPUAN AWAL SISWA, SIKAP BELAJAR SISWA DAN PEMBELAJARAN BERDASARKAN MASALAH TERHADAP KEMAMPUAN PEMECAHAN MASALAH SISWA MADRASAH TSANAWIYAH MEDAN.
0
2
40
PENGARUH STRATEGI PEMBELAJARAN DAN MINAT BELAJAR TERHADAP HASIL BELAJAR KONSTRUKSI POLA PADA SISWA SMK NEGERI 8 MEDAN.
0
1
61
PENGARUH PENDEKATAN PEMBELAJARAN MATEMATIKA DAN MINAT BELAJAR TERHADAP KEMAMPUAN PENALARAN MATEMATIKA MIN MEDAN.
0
1
33
PENGARUH STRATEGI PEMBELAJARAN DAN KEMAMPUAN APRIASI SENI MUSIK TERHADAP HASIL BELAJAR HARMONI SISWA SEKOLAH MENENGAH KEJURUAN (SMK) NEGERI 11 MEDAN.
1
1
24
PENGARUH STRATEGI PEMBELAJARAN REMEDIAL DAN MINAT SISWA TERHADAP HASIL BELAJAR MATEMATIKA DI SMP NEGERI 29 MEDAN.
0
1
27
PENGARUH PEMBELAJARAN MATEMATIKA BERBASIS ICT TERHADAP KEMAMPUAN PEMAHAMAN DAN PEMECAHAN MASALAH MATEMATIS SISWA SMP.
3
7
43
PENGARUH PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN PEMECAHAN MASALAH, KOMUNIKASI DAN REPRESENTASI MATEMATIS SISWA SMP.
2
9
47
PENGARUH MULTI REPRESENTASI PADA PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN REPRESENTASI SISWA SMA - Repository UNIKAMA
0
0
6
PENGARUH PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN REPRESENTASI MATEMATIS SISWA KELAS VII SMP NEGERI 2 SOKARAJA
0
0
15
Show more