Penerapan Data Mining Pada Penjualan Unit Pesawat Di PT. Dirgantara Indonesia Bandung Dengan Metode Clustering

Gratis

0
7
25
2 years ago
Preview
Full text

  

PENERAPAN DATA MINING PADA PENJUALAN UNIT

PESAWAT DI PT. DIRGANTARA INDONESIA

BANDUNG DENGAN METODE CLUSTERING

TUGAS AKHIR

Disusun Untuk Memenuhi Syarat Kelulusan Pada Program Studi

Strata Satu Sistem Komputer di Jurusan Teknik Komputer

  Oleh Beni Harta Ginting

10209094

Pembimbing

  

Selvia Lorena Br Ginting S.Si., M.T

JURUSAN TEKNIK KOMPUTER

  

FAKULTAS TEKNIK DAN ILMU KOMPUTER

UNIVERSITAS KOMPUTER INDONESIA

  

LEMBAR PENGESAHAN

PENERAPAN DATA MINING PADA PENJUALAN UNIT

PESAWAT DI PT. DIRGANTARA INDONESIA BANDUNG

DENGAN METODE CLUSTERING

  Oleh Beni Harta Ginting

  10209094 Telah disetujui dan disahkan di Bandung sebagai Tugas Skripsi pada tanggal :

  Bandung, 28 Juli 2015 Menyetujui,

  Pembimbing 1, Selvia Lorena Br. Ginting, MT.

  NIP: 4127.70.05.003 Mengetahui,

  Dekan Fakultas Teknik dan Ilmu Ketua Jurusan Teknik Komputer Komputer Prof.Dr.H.Denny Kurniadie, Ir.,M.Sc Dr. Wendi Zarman, M.Si.

  NIP: 4127.70.015 NIP: 4127.70.05.10

KATA PENGANTAR

  Puji syukur penulis panjatkan kepada tuhan yang maha esa yang masih memberikan kesehatan dan kesempatannya kepada kita semua, terutama kepada penulis. Sehingga penulis dapat menyelesaikan menyelesaikan skripsi

  Penulis menyadari sepenuhnya, bahwa dalam peyusunan laporan ini masih banyak kekurangan dan jauh dari sempurna. Hal ini disebabkan oleh keterbatasan pengetahuan dan kemampuan penulis. Oleh karena itu, kritik dan saran yang konstruktif akan senantiasa diterima penulis sebagai masukan yang berarti, sehingga dalam penyusunan laporan lainnya penulis dapat menyusun dengan lebih baik. dalam kesempatan ini, penulis ingin mengucapkan terimakasih kepada:

  1. Ir. Dr. Eddy Suryanto Soegoto, M.Sc., selaku Rektor UNIKOM

  2. Ibu Selvia Lorena Br. Ginting. S.Si. M.T selaku pembimbing i yang telah banyak memberikan waktu, saran, nasihat, motivasi dan bimbingan kepada penulis selama menempuh studi.

  3. Bapak Wendi Zarman, M.Si., selaku dosen wali yang telah memberikan arahan, bantuan, saran, nasihat, motivasi dan bimbingan kepada penulis.

  4. Bapak John Adler, M.Si., selaku dosen penulisan proposal dan seminar yang telah memberikan arah dalam penyusunan skripsi ini.

  5. Seluruh dosen jurusan teknik komputer yang telah memberikan banyak ilmu, motivasi dan kedisiplinan kepada penulis.

  6. Ayah, ibu, adik dan semua keluarga ku tercinta yang telah memberikan kasih sayang, doa dan semangat yang tiada henti. Semoga suatu saat aku dapat membanggakan kalian.

  7. Teman-teman di teknik komputer 2009 khususnya kelas 09 tk 03 terima kasih atas bantuan dan dukungan kalian semua kawan-kawan ku tercinta.

  8. Simet kaban, selaku pembimbing pt.dirgantara indonesia dan seluruh karyawan pt.dirgantara indonesia terima kasih atas semua bantuan yang diberikan. Di dalam penulisan skripsi ini, penulis telah berusaha semaksimal mungkin, walaupun demikian penulis menyadari bahwa skripsi ini jauh dari sempurna. Untuk itu penulis akan selalu menerima segala masukkan yang ditujukan untuk menyempurnakan skripsi ini. Akhir kata, penulis berharap semoga skripsi ini dapat bermanfaat bagi penulis pada khususnya dan pembaca pada umumnya.

  Bandung, Agustus 2015 Beni Harta Ginting

  

DAFTAR ISI

LEMBAR PENGESAHAN …………………………………………………………i

LEMBAR PERNYATAAN…………………………………………………………ii

ABSTRAK……………………………………………………………………...……iii

ABSTRACT

  …………………………………………………………………..............iv

KATA PENGANTAR……………………………………………………………….v

DAFTAR ISI………………………………………………………………………..vii

DAFTAR GAMBAR………………………………………………………………..xi

DAFTAR TABEL………………………………………………………………….xiii

DAFTAR SIMBOL………………………………………………………………...xv

BAB I .............................................................................. Error! Bookmark not defined.

  1.1 Latar Belakang Masalah .............................. Error! Bookmark not defined.

  1.2 Maksud dan Tujuan ..................................... Error! Bookmark not defined.

  1.2.1 Maksud .................................................. Error! Bookmark not defined.

  1.2.2 Tujuan ................................................... Error! Bookmark not defined.

  1.3 Batasan Masalah.......................................... Error! Bookmark not defined.

  1.4 Metode Penelitian........................................ Error! Bookmark not defined.

  1.5 Sistematika Penulisan ................................. Error! Bookmark not defined.

  

BAB II ............................................................................ Error! Bookmark not defined.

  2.1 Tinjauan Tempat Penelitian ........................ Error! Bookmark not defined.

  2.1.1 Sejarah Perusahaan................................ Error! Bookmark not defined.

  2.1.2 Visi dan Misi ......................................... Error! Bookmark not defined.

  2.5.1 Notasi Dalam UML ............................... Error! Bookmark not defined.

  

BAB III ........................................................................... Error! Bookmark not defined.

  2.6.3 Microsoft Excel ..................................... Error! Bookmark not defined.

  2.6.2 XAMPP ................................................. Error! Bookmark not defined.

  2.6.1 NetBeans IDE 7.0.1............................... Error! Bookmark not defined.

  2.6 Software Pendukung ................................... Error! Bookmark not defined.

  2.5.5 Activity Diagram................................... Error! Bookmark not defined.

  2.5.4 Sequence Diagram ................................ Error! Bookmark not defined.

  2.5.3 Class Diagram ....................................... Error! Bookmark not defined.

  2.5.2 Use Case Diagram................................. Error! Bookmark not defined.

  2.5 UML ............................................................ Error! Bookmark not defined.

  2.1.3 Struktur Organisasi ............................... Error! Bookmark not defined.

  2.4.3 Proses Clustering Algoritma K-Means . Error! Bookmark not defined.

  2.4.2 K-Means Clustering .............................. Error! Bookmark not defined.

  2.4.1 Algoritma K-Means .............................. Error! Bookmark not defined.

  2.4 K-Means ...................................................... Error! Bookmark not defined.

  2.3 Pengelompokan (Clustering) ...................... Error! Bookmark not defined.

  2.2.3 Arsitektur Data Mining ......................... Error! Bookmark not defined.

  2.2.2 Tahapan Data Mining ............................ Error! Bookmark not defined.

  2.2.1 Pengertian Data Mining......................... Error! Bookmark not defined.

  2.2 Landasan Teori ............................................ Error! Bookmark not defined.

  3.1 Analisis Sistem ............................................ Error! Bookmark not defined.

  3.1.1 Analisis Masalah ................................... Error! Bookmark not defined.

  3.5 Perancangan Tabel ...................................... Error! Bookmark not defined.

  4.1 Implementasi Perangkat Lunak ................... Error! Bookmark not defined.

  

BAB IV ........................................................................... Error! Bookmark not defined.

  3.5.7 Pesan ..................................................... Error! Bookmark not defined.

  3.5.6 Perancangan Prosedural ........................ Error! Bookmark not defined.

  3.5.5 Perancangan Tabel Wilayah .................. Error! Bookmark not defined.

  3.5.4 Perancangan Tabel Produk .................... Error! Bookmark not defined.

  3.5.3 Perancangan Tabel History ................... Error! Bookmark not defined.

  3.5.2 Perancangan Tabel Penjualan ............... Error! Bookmark not defined.

  3.5.1 Perancangan Tabel User ....................... Error! Bookmark not defined.

  3.4.1 Perancangan Antarmuka Pengunjung ... Error! Bookmark not defined.

  3.1.2 Analisis Data ......................................... Error! Bookmark not defined.

  3.4 Perancangan A ntarmuka ............................ Error! Bookmark not defined.

  3.3.1 Perancangan Struktur Menu .................. Error! Bookmark not defined.

  3.3 Perancangan Arsitektur ............................... Error! Bookmark not defined.

  3.2 Entity Relationship Diagram (ERD) ........... Error! Bookmark not defined.

  3.1.7 Class Diagram ....................................... Error! Bookmark not defined.

  3.1.6 Collaboration Diagram ......................... Error! Bookmark not defined.

  3.1.5 Use Case Diagram................................. Error! Bookmark not defined.

  3.1.4 Analisis Kebutuhan Fungsional ............ Error! Bookmark not defined.

  3.1.3 Analisis Kebutuhan Non Fungsional .... Error! Bookmark not defined.

  4.2 Implementasi Perangkat Keras .................... Error! Bookmark not defined.

  4.3 Tampilan Database ..................................... Error! Bookmark not defined.

  4.3.1 Tabel History ......................................... Error! Bookmark not defined.

  4.3.2 Tabel Penjualan ..................................... Error! Bookmark not defined.

  4.3.3 Tabel Produk ......................................... Error! Bookmark not defined.

  4.3.4 Tabel User ............................................. Error! Bookmark not defined.

  4.3.5 Tabel Wilayah ....................................... Error! Bookmark not defined.

  4.4 Implementasi Antarmuka ............................ Error! Bookmark not defined.

  4.4.1 Tampilan Antarmuka User .................... Error! Bookmark not defined.

  4.4.2 Tampilan Antarmuka Utama ................. Error! Bookmark not defined.

  4.4.3 Tampilan Antarmuka Data User ........... Error! Bookmark not defined.

  4.4.4 Tampilan Antarmuka Data Wilayah PenjualanError! Bookmark not defined.

  4.4.5 Tampilan Antarmuka Data Penjualan ... Error! Bookmark not defined.

  4.4.6 Tampilan Antarmuka Diagram PenjualanError! Bookmark not defined.

  4.4.7 Tampilan Antarmuka Import Data ........ Error! Bookmark not defined.

  4.4.8 Tampilan Antarmuka Analisa ClusteringError! Bookmark not defined.

  4.4.9 Tampilan Antarmuka History Proses ClusteringError! Bookmark not defined.

  4.4.10 Tampilan Antarmuka History Proses ClusteringError! Bookmark not defined.

  4.4.11 Tampilan Antarmuka Admin ................ Error! Bookmark not defined.

  4.5 Pengujian Sistem Perangkat Lunak ............. Error! Bookmark not defined.

  4.5.1 Pengujian Alpha .................................... Error! Bookmark not defined.

  4.5.2 Kasus Dan Pengujian Alpha.................. Error! Bookmark not defined.

  4.5.3 Kesimpulan Proses Pengujian Alpha .... Error! Bookmark not defined.

  4.5.4 Pengujian Beta ...................................... Error! Bookmark not defined.

  4.5.5 Kuisioner ............................................... Error! Bookmark not defined.

  4.5.6 Kesimpulan Pengujian Beta .................. Error! Bookmark not defined.

  

BAB V ............................................................................. Error! Bookmark not defined.

  5.1 Kesimpulan ................................................. Error! Bookmark not defined.

  5.2 Saran ............................................................ Error! Bookmark not defined.

DAFTAR RIWAYAT HIDUP

  Nama : Beni Harta Ginting Tempat, Tanggal Lahir : Bandung, 10 April 1991 Jenis Kelamin : Laki - Laki Agama : Kristen Protestan Alamat Tetap : Jl. Kopo Sayati Gg Nata II Dalam No 249

  Kelurahan Margahayu Kecamatan Sayati, Bandung No. Telepon : 082214005242 Email : binben182@gmail.com

  Pendidikan Formal

  2009 - 2015 : UNIVERSITAS KOMPUTER INDONESIA 2006 - 2009 : SMA ANGKASA LANUD SULAIMAN 2003 - 2006 : SMP N 38 BANDUNG

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

  Dalam dunia bisnis yang selalu dinamis dan penuh persaingan, para pelakunya harus senantiasa memikirkan cara-cara untuk survive dan jika mungkin mengembangkan skala bisnis mereka, untuk mencapai hal itu, ada tiga kebutuhan bisnis yang dapat dilakukan, yaitu penambahan jenis maupun peningkatan kapasitas produk, pengurangan biaya operasi perusahaan, dan peningkatan efektifitas pemasaran dan keuntungan. Agar bisa memenuhi kebutuhan-kebutuhan bisnis di atas banyak cara yang dapat ditempuh, salah satunya adalah dengan melalukan analisis data perusahaan.

  PT. Dirgantara Indonesia merupakan perusahaan yang bergerak dalam bidang industri pembuatan unit pesawat. Sebagai perusahaan besar, PT Dirgantara Indonesia menghasilkan berbagai macam unit pesawat dengan nama dan jenis yang berbeda. Tidak hanya PT Dirgantara Indonesia masih cukup banyak juga perusahaan lain yang bergerak di bidang yang sama. Hal tersebut tentu saja menimbulkan persaingan bisnis antar perusahaan.

  Produk yang diproduksi oleh PT Dirgantara Indonesia selain memiliki nama yang berbeda, setiap nama dari unit tersebut pun memiliki jenis yang beragam sesuai dari permintaan konsumen. Produk yang diproduksi tersebut dipasarkan ke banyak kota-kota di Indonesia bukan hanya di Indonesia tetapi dipasarkan juga ke luar negeri Hal ini tentu akan menghasilkan data penjualan produk yang begitu banyak.

  Untuk menghadapi persaingan bisnis yang dinamis pihak perusahaan dituntut agar dapat mengambil keputusan yang tepat dalam menentukan strategi pemasaran produk yang akan dijualnya agar dapat melaksanakan hal tersebut, perusahaan memerlukan informasi yang cukup untuk dapat dianalisa lebih lanjut. Informasi yang dihasilkan tentunya adalah hasil analisis dari pengolahan data penjualan pada perusahaan tersebut. Data penjualan yang sudah ada akan diolah atau dianalisis untuk mengetahui tingkat kecenderungan konsumen di setiap tempat tujuan pemasaran produk pada faktor ketertarikannya. Dari pengolahan data tersebut akan diperoleh suatu pola konsumsi masyarakat terhadap produk dari perusahaan tersebut.

  Ketersediaan data yang melimpah, kebutuhan akan informasi (atau pengetahuan) sebagai pendukung pengambilan keputusan untuk membuat solusi bisnis, dan dukungan infrastruktur di bidang teknologi informasi merupakan cikal- bakal dari lahirnya teknologi data mining. Data mining dimaksudkan untuk memberikan solusi nyata bagi para pengambil keputusan di dunia bisnis, untuk mengembangkan bisnis mereka.

  Data mining didefinisikan sebagai satu set teknik yang digunakan secara otomatis untuk mengeksplorasi secara menyeluruh dan membawa ke permukaan relasi-relasi yang kompleks pada set data yang sangat besar. Set data yang dimaksud di sini adalah set data yang berbentuk tabulasi, seperti yang banyak diimplementasikan dalam teknologi manajemen basis data relasional. Akan tetapi, teknik-teknik data mining dapat juga diaplikasikan pada representasi data yang lain, seperti domain data spatial, berbasis text, dan multimedia (citra). Data mining dapat juga didefinisikan sebagai “pemodelan dan penemuan pola-pola yang tersembunyi dengan memanfaatkan data dalam volume yang besar” Data mining menggunakan pendekatan discovery-based dimana pencocokan pola (pattern-matching) dan algoritma-algoritma yang lain digunakan untuk menentukan relasi-relasi kunci di dalam data yang diekplorasi Data mining merupakan komponen baru pada arsitektur Sistem Pendukung Keputusan (SPK) di perusahaan-perusahaan.

  Pengelompokan (Clustering) mengidentifikasi objek yang memiliki kesamaan karakteristik tertentu, dan kemudian menggunakan karakteristik tersebut sebagai “vektor karakteristik” atau “centroid”. Pengelompokan ini digunakan oleh perusahaan untuk membuat laporan mengenai karakteristik umum dari grup-grup konsumen yang berbeda. Proses Clustering yang akan dilakukan menggunakan algoritma K-Means Dari pertimbangan atas penjelasan yang telah dipaparkan diatas, Maka dibuatlah suatu aplikasi

  PENERAPAN DATA MINING PADA PENJUALAN UNIT

PESAWAT DI PT. DIRGANTARA INDONESIA BANDUNG DENGAN

METODE CLUSTERING ”.

1.2 Maksud dan Tujuan

  Berdasarkan latar belakang permasalahan serta masalah apa saja yang ingin penulis pecahkan, tidak terlepas dari maksud dan tujuan yang terkait dengan perancangan sistem ini.

  1.2.1 Maksud

  Maksud dari penulisan tugas akhir ini adalah merancang dan membangun sebuah aplikasi Data Mining pada penjualan unit pesawat di PT Dirgantara Indonesia dengan menggunakan metode clustering dengan algoritma K-Means

  1.2.2 Tujuan 1. Mempermudah dalam mengolah data penjualan yang cukup besar.

  2. Memberikan gambaran dalam pengambilan keputusan.

  3. Membantu memberikan informasi dari data yang diolah.

  4. Memudahkan perusahaan dalam mengehtahui informasi dari penjualan unit di PT Dirgantara Indonesia.

1.3 Batasan Masalah

  Agar penyusunan penelitian ini tidak keluar dari pokok permasalahan yang dirumuskan, maka ruang lingkup pembahasan dibatasi pada:

  1. Metode yang digunakan dalam Sistem Aplikasi ini menggunakan metode Clustering dengan menggunakan Algoritma K-Means.

  2. Metode perancangan pada model yang digunakan adalah berdasarkan objek.

  3. Software yang digunakan pada aplikasi ini adalah :

  Xampp sebagai client-server database - Desain dan membangun aplikasi dengan menggunakan NetBeans IDE -

  7.0.1 Browser Mozila Firefox untuk mengakses phpMyAdmin pada XAMMP - Format file yang akan diinputkan berupa file database yang berekstensi - SQL atau EXCEL.

  4. Hasil dari analisa tersebut adalah terbentuknya pola penjualan unit pesawat di PT Dirgantara Indonesia.

  5. Menggunakan Sistem Operasi Windows Seven (7) 32bit.

  6. Data yang akan dianalisa merupakan data penjualan unit pesawat di PT Dirgantara Indonesia.

1.4 Metode Penelitian

  Adapun metode penelitian yang dilakukan penulis meliputi: 1.

   Tahap Pengumpulan Data

  Metode pengumpulan data yang digunakan dalam penelitian ini adalah sebagai berikut : a. Studi Literatur

  Penulis akan melakukan pencarian dan pembelajaran dari berbagai literatur dan dokumen sebagai penunjang dalam membuat skripsi ini khususnya yang berkaitan dengan Data Mining yang bermetode Clustering.

  b. Observasi Teknik pengumpulan data dengan mengadakan penelitian dan peninjauan langsung terhadap permasalahan yang diambil.

  c. Interview Teknik pengumpulan data dengan mengadakan Tanya jawab secara langsung yang ada kaitannya dengan topik yang diambil.

2. Tahap Pembuatan Perangkat Lunak

  Teknis analisa data dalam pembuatan perangkat lunak menggunakan pemodelan perangkat lunak dengan paradigma waterfall seperti terlihat pada gambar 1.1, yang meliputi beberapa proses diantaranya:

  a. System / Information Engineering Merupakan bagian dari sistem yang terbesar dalam pengerjaan suatu proyek, dimulai dengan menetapkan berbagai kebutuhan dari semua elemen yang diperlukan sistem dan mengalokasikannya kedalam pembentukan perangkat lunak b. Analisis

  Merupakan tahap menganalisis hal-hal yang diperlukan dalam pelaksanaan proyek pembuatan perangkat lunak.

  c. Design Tahap penerjemahan dari data yang dianalisis kedalam bentuk yang mudah dimengerti oleh user.

  d. Coding Tahap penerjemahan data atau pemecahan masalah yang telah dirancang keadalam bahasa pemrograman tertentu.

  e. Pengujian Merupakan tahap pengujian terhadap perangkat lunak yang dibangun.

  f. Maintenance Tahap akhir dimana suatu perangkat lunak yang sudah selesai dapat mengalami perubahan

  • –perubahan atau penambahan sesuai dengan permintaan user

   Gambar 1-1 Paradigma Waterfall

1.5 Sistematika Penulisan

  Adapun sistematika pada Skripsi ini adalah sebagai berikut:

BAB I PENDAHULUAN Bab ini berisi tentang latar belakang, rumusan masalah, batasan masalah, tujuan, manfaat, metodologi dan sistematika penulisan. BAB II TINJAUAN PUSTAKA Bab ini menjelaskan tentang teori-teori yang terkait dengan permasalah yang diambil. BAB III ANALISA DAN PERANCANGAN Bab ini menjelaskan tentang analisa yang dilakukan dalam merancang dan membuat Sistem Aplikasi. BAB IV IMPLEMENTASI DAN PENGUJIAN Bab ini membahas tentang implementasi dari aplikasi yang dibuat

  secara keseluruhan. Serta melakukan pengujian terhadap aplikasi yang dibuat untuk mengetahui aplikasi tersebut telah dapat menyelesaikan permasalah yang dihadapi sesuai dengan yang diharapkan.

BAB V KESIMPULAN DAN SARAN Bab ini berisi tentang kesimpulan dan saran dari hasil penelitian

  yang diharapkan dapat bermanfaat bagi pengembangan pembuatan aplikasi program selanjutnya.

BAB V KESIMPULAN DAN SARAN Pada bab ini akan menjelaskan mengenai kesimpulan dan saran untuk memperbaiki dan mengembangkan aplikasi yang telah dirancang.

  5.1 Kesimpulan

  Setelah melakukan analisis, perancangan, dan pengujian, maka dapat diperoleh kesimpulan sebagai berikut :

  1. Aplikasi yang dibangun dapat membantu PT. Dirgantara Indonesia sebagai gambaran bagi pengambilan keputusan perusahaan dalam rangka mendapatkan pola penjualan produk yang dihasilkan.

  2. Pengolahan data yang dilakukan dapat menghasilkan informasi yang cukup untuk dapat dianalisa lebih lanjut.

  3. Aplikasi yang dibangun dapat mengurangi penumpukan data yang kurang dimanfaatkan sebelumnya.

  4. Aplikasi yang dibangun dapat memberi gambaran dari penjualan produk ,wilayah dan tahun penjualanya dengan grafik dan diagram yang ada.

  5. Aplikasi yang dibangun dapat Memudahkan perusahaan dalam mengehtahui informasi dari penjualan unit di PT Dirgantara Indonesia

  5.2 Saran Berdasarkan kesimpulan di atas, hal yang diharapkan kedepan adalah agar aplikasi

ini dapat dikembangkan lebih jauh dengan pengolahan data yang lebih besar dan luas

sehingga aplikasi ini benar-benar dapat digunakan sebagai salah satu gambaran dalam

pengambilan keputusan perusahaan yang lebih akurat dan berguna.

  

PENERAPAN DATA MINING PADA PENJUALAN UNIT PESAWAT DI PT.

DIRGANTARA INDONESIA BANDUNG DENGAN METODE CLUSTERING

1) 2) Selvia Lorena Br.Ginting Beni Harta Ginting ,

  1), 2)

  Jurusan Sistem Komputer Universitas Komputer Indonesia Bandung

  

  

ABSTRAK

Dalam dunia bisnis yang selalu dinamis dan penuh persaingan, para pelakunya harus

senantiasa memikirkan cara-cara untuk terus survive dan jika mungkin mengembangkan

skala bisnis mereka PT.Dirgantara Indonesia merupakan perusahaan yang bergerak dalam

bidang pembuatan unit pessawat . Tidak hanya PT.Dirgantara Indonesia, masih cukup

banyak perusahaan-perusahaan lain yang bergerak dibidang serupa. Hal tersebut tentu saja

menimbulkan persaingan bisnis antar perusahaan Dalam rangka menghadapi persaingan

bisnis dan meningkatkan pendapatan perusahaan, pihak terkait dalam perusahaan tersebut

dituntut untuk dapat mengambil keputusan yang tepat dalam menentukan strategi pemasaran

unit pesawat yang akan dijualnya. Ketersediaan data yang melimpah, kebutuhan akan

informasi (atau pengetahuan) sebagai pendukung pengambilan keputusan untuk membuat

solusi bisnis, dan dukungan infrastruktur di bidang teknologi informasi merupakan cikal-

bakal dari lahirnya teknologi data mining. Data mining dimaksudkan untuk memberikan

solusi nyata bagi para pengambil keputusan di dunia bisnis, untuk mengembangkan bisnis

mereka. Salah satu metode yang terdapat dalam data mining yang digunakan dalam

penelitian ini adalah pengelompokan (Clustering) dimana metode tersebut mengidentifikasi

objek yang memiliki kesamaan karakteristik tertentu, dan kemudian menggunakan

karakteristik tersebut sebagai “vektor karakteristik” atau “centroid”. Hasil dari penelitian

ini adalah aplikasi yang dapat mempermudah menganalisis sejumlah data yang besar guna

membantu memberikan informasi berharga sebagai gambaran dasar pengambilan keputusan

perusahaan.

  Kata kunci : persaingan bisnis, solusi bisnis, teknologi informasi, data mining, pengelompokan(clustering) 1.

  analisis data perusahaan. PT. Dirgantara

   PENDAHULUAN

  Indonesia merupakan perusahaan yang Dalam dunia bisnis yang selalu dinamis bergerak dalam bidang industri pembuatan dan penuh persaingan, para pelakunya harus unit pesawat. Sebagai perusahaan besar, PT senantiasa memikirkan cara-cara untuk Dirgantara Indonesia menghasilkan survive dan jika mungkin mengembangkan berbagai macam unit pesawat dengan nama skala bisnis mereka, untuk mencapai hal itu, dan jenis yang berbeda. Tidak hanya PT ada tiga kebutuhan bisnis yang dapat Dirgantara Indonesia masih cukup banyak dilakukan, yaitu penambahan jenis maupun juga perusahaan lain yang bergerak di peningkatan kapasitas produk, pengurangan bidang yang sama. Hal tersebut tentu saja biaya operasi perusahaan, dan peningkatan menimbulkan persaingan bisnis antar efektifitas pemasaran dan keuntungan. Agar perusahaan. Produk yang diproduksi oleh sesuai dari permintaan konsumen. Produk yang diproduksi tersebut dipasarkan ke banyak kota-kota di Indonesia bukan hanya di Indonesia tetapi dipasarkan juga ke luar negeri Hal ini tentu akan menghasilkan data penjualan produk yang begitu banyak.

  Untuk menghadapi persaingan bisnis yang dinamis pihak perusahaan dituntut agar dapat mengambil keputusan yang tepat dalam menentukan strategi pemasaran produk yang akan dijualnya Agar dapat melaksanakan hal tersebut, perusahaan memerlukan informasi yang cukup untuk dapat dianalisa lebih lanjut. Informasi yang dihasilkan tentunya adalah hasil analisis dari pengolahan data penjualan pada perusahaan tersebut. Data penjualan yang sudah ada akan diolah atau dianalisis untuk mengetahui tingkat kecenderungan konsumen di setiap tempat tujuan pemasaran produk pada faktor ketertarikannya. Dari pengolahan data tersebut akan diperoleh suatu pola konsumsi masyarakat terhadap produk dari perusahaan tersebut. Data mining didefinisikan sebagai satu set teknik yang digunakan secara otomatis untuk mengeksplorasi secara menyeluruh dan membawa ke permukaan relasi-relasi yang kompleks pada set data yang sangat besar. Set data yang dimaksud di sini adalah set data yang berbentuk tabulasi, seperti yang banyak diimplementasikan dalam teknologi manajemen basis data relasional. Akan tetapi, teknik-teknik data mining dapat juga diaplikasikan pada representasi data yang lain, seperti domain data spatial, berbasis text, dan multimedia (citra). Data mining dapat juga didefinisikan sebagai “pemodelan dan penemuan pola-pola yang tersembunyi dengan memanfaatkan data dalam volume yang besar” Data mining menggunakan pendekatan discovery-based dimana pencocokan pola (pattern-matching) dan algoritma-algoritma yang lain digunakan untuk menentukan relasi-relasi kunci di dalam data yang diekplorasi Data

  2. TEORI PENUNJANG Data Mining (DM) adalah salah satu

  bidang yang berkembang pesat karena besarnya kebutuhan akan nilai tambah dari database skala besar yang makin banyak terakumulasi sejalan dengan pertumbuhan teknologi informasi. Definisi umum dari DM itu sendiri adalah serangkaian proses untuk menggali nilai tambah berupa pengetahuan yang selama ini tidak diketahui secara manual dari suatu kumpulan data.

  Data mining adalah kombinasi secara logis antara pengetahuan data, dan analisa statistik yang dikembangkan dalam pengetahuan bisnis atau suatu proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machine- learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat bagi pengetahuan yang terkait dari berbagai database besar.

  Pengelompokan (Clustering) merupakan tugas deskripsi yang banyak digunakan dalam mengidentifikasi sebuah himpunan terbatas pada kategori atau cluster untuk mendeskripsikan data yang ditelaah. Kategori-kategori ini dapat bersifat eksklusif dan ekshaustif mutual, atau mengandung representasi yang lebih kaya seperti kategori yang hirarkis atau saling menumpuk (overlapping).

  Berbeda dengan association rule mining dan classification dimana kelas data telah ditentukan sebelumnya, clustering melakukan pengelompokan data tanpa berdasarkan kelas data tertentu. Bahkan clustering dapat dipakai untuk memberikan label pada kelas data yang belum diketahui itu. Karena itu clustering sering digolongkan sebagai metode unsupervised learning. Prinsip dari clustering adalah memaksimalkan kesamaan antar anggota satu kelas dan meminimumkan kesamaan ruang multidimensi. Ilustrasi dari clustering dapat dilihat pada Gambar 2.4 dimana lokasi, dinyatakan dengan bidang dua dimensi, dari pelanggan suatu toko dapat dikelompokkan menjadi beberapa cluster dengan pusat cluster ditunjukkan oleh tanda positif (+).

  Banyak algoritma clustering memerlukan fungsi jarak untuk mengukur kemiripan antar data, diperlukan juga metode untuk normalisasi bermacam atribut yang dimiliki data.

  Beberapa kategori algoritma clustering yang banyak dikenal adalah metode partisi dimana pemakai harus menentukan jumlah k partisi yang diinginkan lalu setiap data di tes untuk dimasukkan pada salah satu partisi, metode lain yang telah lama dikenal adalah metode hierarki yang terbagi dua lagi : bottom-up yang menggabungkan cluster kecil menjadi cluster lebih besar dan top-down yang memecah cluster besar menjadi cluster yang lebih kecil. Kelemahan metode ini adalah bila salah satu penggabungan/pemecahan dilakukan pada tempat yang salah, tidak dapat didapatkan cluster yang optimal. Pendekatan yang banyak diambil adalah menggabungkan metode hierarki dengan metode clustering lainnya seperti yang dilakukan oleh Chameleon.

Gambar 2.4 Ilustrasi Clustering

  K-Means Clustering merupakan metode

  untuk mengklasifikasikan atau mengelompokan objek-objek (data) kedalam K-group (cluster) berdasarkan dengan pusat cluster (centroid). Prinsip utama dari metode ini adalah menyusun K buah centroid atau rata-rata (mean) dari sekumpulan data berdimensi N, dimana metode ini mensyaratkan nilai K sudah diketahui sebelumnya (apriori). Algoritma K-Means dimulai dengan pembentukan prototype cluster diawal kemudian secara iteratif prototipe cluster tersebut diperbaiki sehingga tercapai kondisi konvergen, yaitu kondisi dimana tidak terjadi perubahan yang signifikan terhadap prototipe cluster. Perubahan ini diukur dengan menggunakan fungsi objektif D yang umumnya didefinisikan sebagai jumblah atau rata- ratajarak tiap item data dengan centroid groupnya.

  Algoritma K-Means

  K-Means termasuk dalam partitioning clustering yaitu setiap data harus masuk dalam cluster tertentu dan memungkinkan bagi setiap data yang termasuk dalam cluster tertentu pada suatu tahapan proses, pada tahapan berikutnya berpindah ke cluster yang lain. K-Means memisahkan data ke k daerah bagian yang terpisah, dimana k adalah bilangan integer positif. Algoritma K-Means sangat terkenal karena kemudahan dan kemampuannya untuk mengklasifikasi data besar dan outlier dengan sangat cepat. Berikut adalah langkah-langkah algoritma K-Means :

  1. Penentuan Pusat Cluster Awal Dalam menentukan n buah pusat cluster awal dilakukan pembangkitan bilangan random yang merepresentasikan urutan data input. Pusat awal cluster didapatkan dari data sendiri bukan dengan menentukan titik baru, yaitu dengan menrandom pusat awal dari data.

  2. Perhitungan Jarak Dengan Pusat Cluster Untuk mengukur jarak antara data dengan pusat cluster digunakan

  Euclidian distance. 1) Algoritma perhitungan jarak data dengan pusat cluster Hitung Euclidian distance data dengan tiap pusat cluster

  3 Pengelompokkan Data Jarak hasil perhitungan akan dilakukan perbandingan dan dipilih jarak terdekat antara data dengan pusat cluster, jarak ini menunjukkan bahwa data tersebut berada dalam satu kelompok dengan pusat cluster terdekat.

  1) Ambil nilai jarak tiap pusat cluster dengan data 2) Cari nilai jarak terkecil 3) Kelompokkan data dengan pusat cluster yang memiliki jarak terkecil.

  4. Penentuan pusat cluster baru Untuk mendapatkan pusat cluster baru bisa dihitung dari rata-rata nilai anggota cluster dan pusat cluster. Pusat cluster yang baru digunakan untuk melakukan iterasi selanjutnya, jika hasil yang didapatkan belum konvergen. Proses iterasi akan berhenti jika telah memenuhi maksimum iterasi yang dimasukkan oleh User atau hasil yang dicapai sudah konvergen (pusat cluster baru sama dengan pusat cluster lama).

  Proses Clustering Algoritma K-Means

  Pada tahap ini akan dilakukan proses utama yaitu segmentasi data nilai yang diakses dari database yaitu sebuah metode clustering algoritma K-Means. Berikut ini merupakan diagram flowchart dari algoritma K-Means dengan asumsi bahwa parameter input adalah jumlah data set sebanyak n data dan jumlah inisialisasi centroid K=4 sesuai dengan jumlah jurusan yang ada di PT Dirgantara Indonesia yaitu Boeing, Hovercraft, Helikopter, dan Aircraft beberapa langkah yang dilalui oleh clustering algoritma K-Means memuat bagian-bagian sebagai berikut ini:

  1. N data : data set yang akan diolah sebanyak N data dimana N data tersebut terdiri dari atribut-atributnya N(Boeing,Hovercraft,Helikopter, dan

  2. K Centroid : Inisialisasi dari pusat cluster data adalah sebanyak K dimana pusat-pusat awal tersebut digunakan sebagai banyaknya kelas yang akan tercipta. Centroid didapatkan secara random dari N data set yang ada.

  3. Euclidian Distance: merupakan jarak yang didapat dari perhitungan antara semua N data dengan K centroid dimana akan memperoleh tingkat kedekatan dengan kelas yang terdekat dengan populasi data tersebut. Jarak euclidian untuk menandai adanya persamaan antar tiap cluster dengan jarak minimum dan mempunyai persamaan yang lebih tinggi. Euclidian matrik.

  Dimana : x : Titik data pertama y : Titik data kedua, n : Jumlah karakteristik (attribut) dalam terminologi data mining, d(x,y) : Euclidian distance yaitu jarak antara data pada titik x dan titik y menggunakan kalkulasi matematika

  4. Pengelompokkan Data: setelah sejumlah populasi data tersebut menemukan kedekatan dengan salah satu centroid yang ada maka secara otomatis populasi data tersebut masuk kedalam kelas yang memiliki centroid yang bersangkutan.

  5. Update Centroid Baru: tiap kelas yang telah tercipta tadi melakukan update centroid baru. Hal ini dilakukan dengan menghitung nilai rata-rata dari kelas masing-masing. Apabila belum memenuhi optimal hasil proses pengukuran ecluidian distance dilakukan kembali.

  6. Batas Iterasi : apabila dalam proses clustering belum optimal namun sudah memenuhi batas iterasi maka proses dihentikan ERD Nama_wilayah Id_wilayah PK : idjual tanggal Nama_produk

  kelas Wilayah PK : id_wilayah PK : Prodid 1 memiliki n Penjualan n memiliki jumlah prodid 1 1 Produk rata1 rata3 memiliki

Gambar 4.2 Tampilan

  rata2 1 rata4 utama jumlah History Jumlah_cluster d.proses analisa clustering kelompok No_cluster Id_wilayah

Gambar 3.1 ERD yang digunakan 4.

   IMPLEMENTASI DAN PENGUJIAN Implementasi Aplikasi

Gambar 4.3 Tampilan form proses clustering a. Implementasi Antar Muka Pengguna ( User Interface) awal

  Berikut adalah tampilan antar muka pengguna (user interface) aplikasi.

Gambar 4.4 tampilan form history proses clustering dan laporan akhirGambar 4.1 Tampilan awal b. Implementasi tampilan utama

5. KESIMPULAN DAN SARAN

  Setelah melalui tahap implementasi dan pengujian sistem dilakukan maka dapat diambil beberapa kesimbulan sebagai berikut:

  Setelah melakukan analisis, perancangan, dan pengujian, maka dapat diperoleh kesimpulan sebagai berikut :

  1. Aplikasi yang dibangun dapat membantu PT. Dirgantara Indonesia sebagai gambaran bagi pengambilan keputusan perusahaan dalam rangka mendapatkan pola penjualan produk yang dihasilkan.

  2. Pengolahan data yang dilakukan dapat menghasilkan informasi yang cukup untuk dapat dianalisa lebih lanjut.

  3. Aplikasi yang dibangun dapat mengurangi penumpukan data yang kurang dimanfaatkan sebelumnya.

  4. Aplikasi yang dibangun dapat memberi gambaran dari penjualan produk ,wilayah dan tahun penjualanya dengan grafik dan diagram yang ada.

  5. Aplikasi yang dibangun dapat Memudahkan perusahaan dalam mengehtahui informasi dari penjualan unit di PT Dirgantara Indonesia

  Adapun saran untuk mengoptimalkan aplikasi di masa mendatang adalah sebagai berikut:

  1. Berdasarkan kesimpulan di atas, hal yang diharapkan kedepan adalah agar aplikasi ini dapat dikembangkan lebih jauh dengan pengolahan data yang lebih besar dan luas sehingga aplikasi ini benar- benar dapat digunakan sebagai salah satu gambaran dalam pengambilan keputusan perusahaan yang lebih akurat dan berguna. http://andyku.wordpress.com/2008/04/ 17/data-mining-dan-web-mining/ [2] Andri Heryandi, S.T. SQL (Structured Query Language) dengan delphi, Diktat Delphi, 1-55 [3] Iko Pramudiono. (Rabu, 4 Maret 2009), Pengantar Data Mining: Menambang Permata Pengetahuan di Gunung Data, http://ilmukomputer.org/2008/11/25/p engantardata-mining/ [4] Kadir, Abdul,( 2001), Konsep Dan Tuntunan Basis Data , Yogyakarta : Andi.

  [5] Sandy Kurniawan, Taufiq Hidayat (Rabu, 5 Agustus 2009), PENERAPAN DATA MINING DENGAN METODE

  INTERPOLASI UNTUK MEMPREDIKSI MINAT KONSUMEN ASURANSI (Studi [7] Susanti, Azhar, (2003), Sistem Informasi Management, Yogyakarta: Andi.

  Yusta Noverison. (Selasa, 3 Maret 2009), Data Mining, http://yustanoverison.blogspot.com/20 08/05/data-mining.html

Dokumen baru

Tags

Dokumen yang terkait

Penerapan Data Mining Menggunakan Metode Association Rule Pada Data Transaksi Kartika Kosmetik
9
45
138
Aktivitas Penjualan Produk-Produk SBU HE Di PT. Dirgantara Indonesia
0
9
54
Penerapan Data Mining Pada Penjualan Produk Benang Di PT. Bandung Perkasa Jaya Menggunakan Metode Associantion Rule
0
10
84
Penerapan Data Mining Pada Penjualan Produk Di PT. Trimitra Tunas Sakti Wilayah Jawa Timur Menggunakan Metode Clustering
13
61
170
Penerapan Data Mining pada Data Penjualan di Slasher Clothing Menggunakan Metode Association Rule
0
13
109
Penerapan Data Mining Pada Penjualan Produk Baju Di Air Plane SYTM
8
30
126
Penerapan Data Mining Pada Data UkG Untuk Membentuk Kelompok Diklat Guru Menggunakan Metode Clustering
3
44
99
Penerapan Data Mining Dalam Perekomendasian Produksi TasDengan Metode Assosiation Mining Rules Di Kartin Collection
1
5
152
Penerapan Data Mining Untuk Membentuk Kelompok Belajar Menggunakan Metode Clustering Di SMPN 19 Bandung
2
47
1
Penerapan Data Mining pada data Penjualan Sepatu Untuk Membentuk Segmintasi Distributor di CV Mimosabi Menggunakan Metode Clustering
0
6
1
Penerapan Data Mining Pada penjualan Produk Minuman Di PT. Pepsi Cola Indobeverages Menggunakan Metode Clustering
11
82
168
Penerapan Data Mining Pada Penjualan Unit Pesawat Di PT. Dirgantara Indonesia Bandung Dengan Metode Clustering
0
7
25
Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia
0
1
6
Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori
0
2
6
Survey of Clustering Data Mining Techniques
0
0
56
Show more